
Apertis Geolocation
and Navigation

Design

Author: Philip Withnall
Contributors: Guillaume Desmottes, Simon McVittie
Version: 0.2.1
Status: Draft
Date: 2015-11-12
Last Reviewer: Simon McVittie

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.2.1 2015-11-12 • Clarified application activation on receipt of signals
• Clarify terminology ‘signal’ vs ‘notification’

0.2.0 2015-11-04 • Added more use cases and reworked requirements
• Clarified requirements for multiple backends

0.1.2 2015-10-21 • All navigation functionality must be available when the
vehicle is offline.

0.1.1 2015-10-14 • Clarification of open questions about old APIs.

0.1.0 2015-10-14 • New document to summarise background research.

Table of Contents
 Document Change Log..2
1 Introduction..6
2 Terminology and concepts...7

2.1 Coordinates..7
2.2 Geolocation...7
2.3 Forward geocoding...7
2.4 Reverse geocoding..7
2.5 Geofencing...7
2.6 Route planning...7
2.7 Route replanning..7
2.8 Route cancellation...7
2.9 Point of interest..8
2.10 Text-to-speech (TTS)...8

3 Use cases...9
3.1 Relocating the vehicle..9
3.2 Automotive backend..9

3.2.1 Custom automotive backend functionality...9
3.3 SDK backend...9
3.4 Different types of vehicle...9
3.5 Route calculation for public transport...9
3.6 Audio-only route guidance...10
3.7 Viewing an address on the map..10
3.8 Finding the address of a location on the map...10
3.9 Type-ahead search and completion for addresses...10
3.10 Navigating between two places...10
3.11 Changing destination during navigation..11
3.12 Navigating via waypoints...11
3.13 Estimated time left in a navigation..11
3.14 Deviating off a navigation route...11
3.15 Changing navigation route due to traffic conditions...11
3.16 Turn-by-turn navigation directions..12
3.17 Navigation road information..12
3.18 Resuming a navigation route..12
3.19 Cancelling a navigation route...12
3.20 Tasks nearby..12
3.21 Turning on house lights..12
3.22 Travelling abroad..12
3.23 Temporary loss of GPS signal...13
3.24 Look up the address of a contact..13
3.25 Navigation-driven refinement of geolocation...13
3.26 Application-driven refinement of geolocation...13

3.26.1 Excessive results from application-driven refinement of geolocation.........................13

3.27 Malware application bundle..13
4 Non-use-cases..14

4.1 POI data..14
4.2 Beacons..14
4.3 Loading map tiles from a backend...14

5 Requirements..15
5.1 Geolocation API...15
5.2 Geolocation service supports signals..15
5.3 Geolocation implements caching..15
5.4 Geolocation supports backends...15
5.5 Navigation routing API..15
5.6 Navigation routing supports backends...16
5.7 Type-ahead search and address completion supports backends...16
5.8 Geocoding supports backends..16
5.9 SDK has default implementations for all backends..16
5.10 SDK APIs do not vary with backend..16
5.11 Navigation routing supports vehicle types..16
5.12 Navigation routing supports alternative routes...17
5.13 Turn-by-turn instructions are suitable for TTS...17
5.14 TTS route guidance must be implemented as a service...17
5.15 2D map rendering API..17
5.16 Reverse geocoding API...17
5.17 Forward geocoding API..18
5.18 Type-ahead search and address completion API..18
5.19 Navigation routing supports waypoints...18
5.20 Navigation routing supports different optimisations..18
5.21 Navigation routing provides turn-by-turn instructions...18
5.22 3D map rendering API..19
5.23 Navigation routing provides statistics...19
5.24 Navigation routing provides road information..19
5.25 Navigation routing can wake up applications...19
5.26 Geofencing API..19
5.27 Geofencing service can wake up applications..20
5.28 Navigation routing must be locale-aware..20
5.29 Geocoding API must be locale-aware...20
5.30 Geolocation provides error bounds...20
5.31 Geolocation implements dead-reckoning..20
5.32 Geolocation uses navigation data if available..20
5.33 Geocoding uses general points of interest streams...20
5.34 Location information requires permissions to access..21
5.35 Rate limiting of general point of interest streams...21

6 Existing geo systems..22
6.1 W3C Geolocation API..22
6.2 Android platform location API..22
6.3 Google Location Services API for Android..22
6.4 iOS Location and Maps API..22

6.5 GNOME APIs...23
6.5.1 GeoClue..23
6.5.2 Geocode-glib..24
6.5.3 libchamplain...24
6.5.4 NavIt..24

6.6 Navigation routing systems..24
6.6.1 GraphHopper..24
6.6.2 OSRM..25
6.6.3 YOURS..25

6.7 NavServer...25
7 Approach...26

7.1 Backends...26
7.2 2D map display..26
7.3 3D map display...27
7.4 Geolocation...27
7.5 Geolocation signals..27
7.6 Navigation routing..28
7.7 Localisation of geocoding...28
7.8 Localisation of routing information...29
7.9 Forward and reverse geocoding..29
7.10 Address completion...29
7.11 Route alerts...30
7.12 Geofencing..30
7.13 Location security..30
7.14 Systemic security..31
7.15 Requirements..31
7.16 Suggested roadmap..33

8 Open questions..34
9 Summary of recommendations..35

1 INTRODUCTION
This documents existing solutions for geo-related features which could be integrated into
Apertis for providing geolocation, geofencing, geocoding and navigation routing support
for application bundles.

As of version 0.2.0, the recommended solutions for most of the geo-requirements for
Apertis are already implemented as open source libraries which can be integrated into
Apertis. Some of them require upstream work to add smaller missing features.

New components need to be written for offline address completion and geocoding, as
existing solutions for these are only available as online services.

The major considerations with all of these features are:

• Whether the feature needs to work offline or can require the vehicle to have an
internet connection.

• Privacy sensitivity of the data used or made available by the feature — for example,
access to geolocation or navigation routing data is privacy sensitive as it gives the
user’s location.

• All features must support pluggable backends to allow proprietary solutions to be
used if provided by the automotive domain.

2 TERMINOLOGY AND CONCEPTS

2.1 COORDINATES

Throughout this document, coordinates (or a coordinate pair) are taken to mean a latitude
and longitude describing a single point in some well-defined coordinate system (typically
WGS84).

2.2 GEOLOCATION

Geolocation is the resolution of the vehicle’s current location to a coordinate pair. It might
not be possible to geolocate at any given time, due to unavailability of sensor input such
as a GPS lock.

2.3 FORWARD GEOCODING

Forward geocoding is the lookup of the zero or one addresses which correspond to a
coordinate pair.

2.4 REVERSE GEOCODING

Reverse geocoding is the parsing of an address or textual description of a location, and
returning zero or more coordinates which match it.

2.5 GEOFENCING

Geofencing is a system for notifying application bundles when the vehicle enters a pre-
defined ‘fenced’ area. For example, this can be used for notifying about jobs to do in a
particular area the vehicle is passing through, or for detecting the end of a navigation
route.

2.6 ROUTE PLANNING

Route planning is where a start, destination and zero or more via-points are specified by the
user, and the system plans a road navigation route between them, potentially optimising
for traffic conditions or route length.

2.7 ROUTE REPLANNING

Route replanning is where a route is recalculated to follow different roads, without changing
the start, destination or any via-points along the way. This could happen if the driver took
a wrong turn, or if traffic conditions change, for example.

2.8 ROUTE CANCELLATION

Route cancellation is when a route in progress has its destination or via-points changed or
removed. This does not necessarily happen when the vehicle is stopped or the ignition

turned off, as route navigation could continue after an over-night stop, for example.

2.9 POINT OF INTEREST

A point of interest (POI) is a specific location which someone (a driver or passenger) might
find interesting, such as a hotel, restaurant, fuel station or tourist attraction.

2.10 TEXT-TO-SPEECH (TTS)

Text-to-speech (TTS) is a user interface technology for outputting a user interface as
computer generated speech.

3 USE CASES
A variety of use cases for application bundle usage of geo-features are given below.
Particularly important discussion points are highlighted at the bottom of each use case.

In all of these use cases, unless otherwise specified, the functionality must work
regardless of whether the vehicle has an internet connection. i.e. They must work offline.

3.1 RELOCATING THE VEHICLE

If the driver is driving in an unfamiliar area and thinks they know where they are going,
then realises they are lost, they must be able to turn on geolocation and it should pinpoint
the vehicle’s location on a map if it’s possible to attain a GPS lock or get the vehicle’s
location through other means.

3.2 AUTOMOTIVE BACKEND

A derivative of Apertis may wish to integrate its own geo-backend, running in the
automotive domain, and providing all geo-functionality through proprietary interfaces. The
system integrators may wish to use some functionality from this backend and other
functionality from a different backend. They may wish to ignore some functionality from
this backend (for example, if its implementation is too slow or is missing) and not expose
that functionality to the app bundle APIs at all (if no other implementation is available).

3.2.1 CUSTOM AUTOMOTIVE BACKEND FUNCTIONALITY

The proprietary geo-backend in a derivative of Apertis may expose functionality beyond
what is described in this design, to be used by app bundles provided by the system
integrator. This functionality may be exposed directly by the backend and used by
applications using specific APIs on the backend.

3.3 SDK BACKEND

Developers using the Apertis SDK to develop applications must have access to geo-
functionality during development. All geo-functionality must be implemented in the SDK.

The SDK can be assumed to have internet access, so these implementations may rely on
the internet for their functionality.

3.4 DIFFERENT TYPES OF VEHICLE

When calculating a navigation route (Navigating between two places), the system should
support calculating routes for different types of vehicle — the system could be deployed in
a car, or a motorbike, or a HGV, for example. Different roads are available for use by these
different vehicles.

3.5 ROUTE CALCULATION FOR PUBLIC TRANSPORT

When calculating a navigation route, the system should be able to calculate a route

between the same start, via-points and destination using public transport, for example to
provide a comparison against the car route; or to incorporate public transport schemes
such as park-and-ride into its route suggestions.

3.6 AUDIO-ONLY ROUTE GUIDANCE

If the driver is navigating a route (Navigating between two places), the system should
support audio turn-by-turn navigation, reading out route instructions to the driver as they
are approached. This allows the driver to avoid looking at the IVI screen to see the map,
allowing them to focus their eyes on the road.

Route guidance must continue even if another application takes the foreground focus on
the IVI system.

3.7 VIEWING AN ADDRESS ON THE MAP

The driver is attempting to get to a location nearby, and they do not want to do a full
navigation route; they have the destination address and want to see a map of the area
around it. They must be able to enter the address and see it displayed on the map.

In order to see the surrounding area, the map should be a 2D top-down atlas-style view.

3.8 FINDING THE ADDRESS OF A LOCATION ON THE MAP

The driver has found somewhere on the map which they want to drive to, but they do not
know its address and wish to copy that down to their phone. The system must be able to
display the address of a selected building or area, if it is known to the system’s map
provider.

3.9 TYPE-AHEAD SEARCH AND COMPLETION FOR ADDRESSES

When entering a textual address for navigation, the system may provide completion
options to the user as they type, if any potential completion addresses are known to the
system’s map provider. This allows the user to speed up entry of addresses, and bypass
making typos on longer addresses while typing when the vehicle is moving (if the
passenger is entering an address, for example).

This functionality is optional — if not implemented, or if no completion information is
available for the current region, the system must not provide completion suggestions.

3.10 NAVIGATING BETWEEN TWO PLACES

The driver must be able to specify a start and destination address and have the system
calculate a driving route between the two, optimising for minimal travel time (or
potentially for other factors). The system should display an overview of the calculated
route and provide turn-by-turn directions (Turn-by-turn navigation directions). The system
must track the driver’s current location on the map throughout the navigation.

In order to better match the driver’s view out of the windscreen, the map displayed when

navigating should be a 3D projection to better emphasise navigational input which is
coming up sooner (for example, the nearest junction or road signs).

3.11 CHANGING DESTINATION DURING NAVIGATION

If the driver changes their mind about which destination to go to en-route to their original
destination, the system must support changing the destination and calculating a new
route.

3.12 NAVIGATING VIA WAYPOINTS

When entering a route, the driver may want to go via a specific intermediate location
before heading to their final destination. The system must allow the driver to enter zero or
more via-points which the route must go between, in order. The calculated route should
still be optimised for minimal travel time (or some other criterion). As the driver’s plans
might change en-route, the system must allow changing the set of via-points while part-
way through navigation.

3.13 ESTIMATED TIME LEFT IN A NAVIGATION

While navigating, the system must provide the driver with up-to-date information about
the estimated travel time and distance left on their route, plus the total elapsed travel
time since starting the route. This allows the driver to work out when to take rest breaks
from driving.

3.14 DEVIATING OFF A NAVIGATION ROUTE

If the driver takes a wrong turning while navigating, the system must detect this and
recalculate the route to bring them back en-route to their destination, reoptimising the
route for minimal travel time (or some other criterion) from their new location.

The system must support calculating a radically different route if the vehicle’s new
location makes the previous route infeasible.

The route recalculation should happen within a short time period (on the order of ten
seconds) so that the driver gets updated routing information quickly.

3.15 CHANGING NAVIGATION ROUTE DUE TO TRAFFIC CONDITIONS

The system must support recalculating and potentially changing a navigation route if
traffic conditions change and make the original route take significantly longer than an
alternative route.

There must be some form of hysteresis on these recalculations so that two routes which
have very similar estimated travel times, but which keep alternating as the fastest, do not
continually replace each other as the suggested route.

The system may ask or inform the driver about route recalculations, as the driver may be
able to assess and predict the traffic conditions better than the system.

3.16 TURN-BY-TURN NAVIGATION DIRECTIONS

While navigating, the system must provide turn-by-turn navigation directions to the driver
if desired by them. This includes directions about signage, upcoming turns, speed limits,
speed cameras, etc.

3.17 NAVIGATION ROAD INFORMATION

While navigating, the system must provide information to the driver about the roads the
vehicle is travelling along or heading towards and going to turn on to in future, such as the
road name and number, and major towns or cities the road leads to. This allows the driver
to match up the turn-by-turn navigation directions (Turn-by-turn navigation directions)
with on-road signage.

3.18 RESUMING A NAVIGATION ROUTE

If the driver takes a rest break during a navigation route, and turns the vehicle off, the
system must give the driver the option to resume the navigation route when the vehicle is
turned on again. The route must be recalculated from the vehicle’s current location to
ensure the resumed route is still optimal for current traffic conditions.

3.19 CANCELLING A NAVIGATION ROUTE

As well as resuming the route in Resuming a navigation route, the vehicle must support
cancelling the navigation when the vehicle is turned on again, at which point all
navigation and turn-by-turn directions stop.

3.20 TASKS NEARBY

A to-do list application may allow the user to associate a location with a to-do list item,
and should display a notification if the vehicle is driven near that location, reminding the
driver that they should pop by and do the task. Once the task is completed or removed, the
geo-fenced notification should be removed.

3.21 TURNING ON HOUSE LIGHTS

A ‘smart home’ application may be able to control the user’s house lights over the internet.
If the vehicle is heading towards the user’s house, the app should be able to detect this
and set turn the lights on over the internet to greet the user when they get home.

3.22 TRAVELLING ABROAD

The driver must be able to take the vehicle abroad and it should provide locale-sensitive
navigation information, such as speed limits in the local units, and road descriptions
which match the local signage conventions.

3.23 TEMPORARY LOSS OF GPS SIGNAL

When going through a tunnel, for example, the vehicle may lose sight of GPS satellites and
no longer have a GPS fix. The system must continue to provide an estimated vehicle
location to apps, with suitably increasing error bounds. This location may be calculated by
dead reckoning from the last known GPS fix and vehicle trajectory, for example.

3.24 LOOK UP THE ADDRESS OF A CONTACT

The driver wants to navigate to a friend's house, but cannot remember their address. They
have the address in their address book. The driver should be able to open the navigation
app, enter the name of their friend, and the app will look up the friend's address for
navigation.

3.25 NAVIGATION-DRIVEN REFINEMENT OF GEOLOCATION

The location reported by the geolocation APIs may be refined by input from the navigation
system, such as snapping the location to the nearest road, or supplementing it with dead-
reckoning data based on the vehicle’s velocity history.

3.26 APPLICATION-DRIVEN REFINEMENT OF GEOLOCATION

If the user installs an application bundle from a new restaurant chain (‘Hamburger Co’,
who are new enough that their restaurants are not in commercial mapping datasets yet),
and wants to search for such a restaurant in a particular place (London), they may enter
‘Hamburger Co, London’. The application bundle should expose its restaurant locations as
a general point of interest stream1, and the geocoding system should query that in
addition to its other sources.

3.26.1 EXCESSIVE RESULTS FROM APPLICATION-DRIVEN REFINEMENT OF GEOLOCATION

A badly written application bundle which exposes a general point of interest stream might
return an excessive number of results for a query — either results which are not relevant to
the current geographic area, or too many results to reasonably display on the current map.

3.27 MALWARE APPLICATION BUNDLE

A malicious developer may produce a malware application bundle which, when installed,
tracks the user’s vehicle to work out opportune times to steal it. This should not be
possible.

1 https://wiki.apertis.org/Points_of_interest#General_POI_providers

https://wiki.apertis.org/Points_of_interest#General_POI_providers

4 NON-USE-CASES

4.1 POI DATA

Handling of points of interest is covered by the Points of interest design2. This includes
searching for points of interest nearby, displaying points of interest while driving past
them, and looking up information about points of interest.

4.2 BEACONS

The iOS Location and Maps API supports advertising a device’s location3 using a low-power
beacon, such as Bluetooth. This is not a design goal for the Apertis geo-APIs.

4.3 LOADING MAP TILES FROM A BACKEND

There is no use case for implementing 2D map rendering via backends and (for example)
loading map tiles from a backend in the automotive domain. 2D map rendering can be
done entirely in the IVI domain using a single libchamplain backend (tile source).

This may change in future iterations of this document.

2 https://wiki.apertis.org/Points_of_interest
3 https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwareness

PG/RegionMonitoring/RegionMonitoring.html#//apple_ref/doc/uid/TP40009497-CH9-SW1

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html#//apple_ref/doc/uid/TP40009497-CH9-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html#//apple_ref/doc/uid/TP40009497-CH9-SW1
https://wiki.apertis.org/Points_of_interest

5 REQUIREMENTS

5.1 GEOLOCATION API

Geolocation using GPS must be supported. Uncertainty bounds must be provided for the
returned location, including the time at which the location was measured (in order to
support cached locations). The API must gracefully handle failure to geolocate the vehicle
(for example, if no GPS satellites are available).

Locations must be provided with speed, altitude and bearing information if known.

See Relocating the vehicle.

5.2 GEOLOCATION SERVICE SUPPORTS SIGNALS

Application bundles must be able to register to receive a signal whenever the vehicle’s
location changes significantly. The bundle should be able to specify a maximum time
between updates and a maximum distance between updates, either of which may be zero.
The bundle should also be able to specify a minimum time between updates, in order to
prevent being overwhelmed by updates.

See Navigating between two places, Estimated time left in a navigation, Deviating off a
navigation route, Turn-by-turn navigation directions.

5.3 GEOLOCATION IMPLEMENTS CACHING

If an up-to-date location is not known, the geolocation API may return a cached location
with an appropriate time of measurement.

See Relocating the vehicle, Tasks nearby.

5.4 GEOLOCATION SUPPORTS BACKENDS

The geolocation implementation must support multiple backend implementations, with
the selection of backend or backends to be used in a particular distribution of Apertis
being an integration time decision.

See Automotive backend.

5.5 NAVIGATION ROUTING API

Planning a route between two locations must be supported (see Navigating between two
places), including support for via-points (see Navigating via waypoints). There must be a
way to update the route as the journey progresses (see Changing navigation route due to
traffic conditions).

It is assumed that other use cases requiring route recalculation can be handled similarly
as the initial calculation of a route (see Resuming a navigation route, Deviating off a
navigation route, Changing destination during navigation).

Navigation routing must work when the vehicle has no internet connection.

See Automotive backend.

5.6 NAVIGATION ROUTING SUPPORTS BACKENDS

The navigation routing implementation must support multiple backend implementations,
with the selection of backend or backends to be used in a particular distribution of Apertis
being an integration time decision.

See Automotive backend.

5.7 TYPE-AHEAD SEARCH AND ADDRESS COMPLETION SUPPORTS BACKENDS

The address completion implementation must support multiple backend
implementations, with the selection of backend or backends to be used in a particular
distribution of Apertis being an integration time decision.

See Automotive backend.

5.8 GEOCODING SUPPORTS BACKENDS

The geocoding implementation must support multiple backend implementations, with the
selection of backend or backends to be used in a particular distribution of Apertis being
an integration time decision.

See Automotive backend.

5.9 SDK HAS DEFAULT IMPLEMENTATIONS FOR ALL BACKENDS

A free software, default implementation of all geo-functionality must be provided in the
SDK, for use by developers. It may rely on an internet connection for its functionality.

The SDK implementation must support all functionality of the geo-APIs in order to allow
app developers to test all functionality used by their applications.

See SDK backend.

5.10 SDK APIS DO NOT VARY WITH BACKEND

App bundles must not have to be modified in order to switch backends: the choice of
backend should not affect implementation of the APIs exposed in the SDK to app bundles.

See Automotive backend.

5.11 NAVIGATION ROUTING SUPPORTS VEHICLE TYPES

The routing library must support calculating routes for different vehicle types, including
(for example) cars, motorbikes, HGVs, pedestrians and various types of public transport. It
must support defining the set of vehicle types to use for planning a particular route, so
that routes which use a combination of vehicle types can be calculated (for example,

driving to a park-and-ride station, taking a bus for a short distance, then walking to the
destination).

See Different types of vehicle, Route calculation for public transport.

5.12 NAVIGATION ROUTING SUPPORTS ALTERNATIVE ROUTES

The routing library must support providing one or more alternative routes for a given
navigation, to allow the user to choose their preferred one.

See Changing navigation route due to traffic conditions.

5.13 TURN-BY-TURN INSTRUCTIONS ARE SUITABLE FOR TTS

Turn-by-turn navigation instructions generated by the routing library must be suitable to
be read out by a TTS system. If necessary, this might mean including metadata in the
instructions to assist with pronunciation or emphasis of important words.

See Audio-only route guidance.

5.14 TTS ROUTE GUIDANCE MUST BE IMPLEMENTED AS A SERVICE

The route guidance and text to speech service must be a service rather than an
application, so that route guidance can continue to function In the background if a second
application is started in the foreground.

See Audio-only route guidance.

5.15 2D MAP RENDERING API

Map display has the following requirements:

• Rendering the map (see Relocating the vehicle).

• Rendering the vehicle’s current location (see Relocating the vehicle).

• Rendering points of interest, including start and destination points for navigation.

• Rendering a path or route.

• Rendering a polygon or region highlight.

• The map display must support loading client side map tiles, or server-provided
ones.

See Viewing an address on the map.

Open question: Should map rendering be done client-side (vector maps) or pre-computed
(raster maps)?

5.16 REVERSE GEOCODING API

Reverse geocoding must be supported for address entry when creating a navigation route,

converting an address into zero or more coordinates (see Viewing an address on the map).
Limiting the search results to coordinates in a radius around a given reference coordinate
pair must be supported.

Reverse geocoding must work when the vehicle has no internet connection.

See Viewing an address on the map, Look up the address of a contact.

5.17 FORWARD GEOCODING API

Forward geocoding must be supported for querying addresses at selected coordinates on
the map when creating a navigation route (see Finding the address of a location on the
map). Limiting the search results to a given radius around the coordinates, and a certain
number of results, should be supported.

Forward geocoding must work when the vehicle has no internet connection.

See Finding the address of a location on the map.

5.18 TYPE-AHEAD SEARCH AND ADDRESS COMPLETION API

Suggesting and ranking potential completions to a partially entered address must be
supported by the system, with latency suitable for use in a type-ahead completion system.

Address completion must work when the vehicle has no internet connection.

See Type-ahead search and completion for addresses.

5.19 NAVIGATION ROUTING SUPPORTS WAYPOINTS

The routing library must support the use of zero or more via-points in route calculations,
and must support changing the set of via-points and recalculating the route after the
initial calculation.

See Navigating between two places.

5.20 NAVIGATION ROUTING SUPPORTS DIFFERENT OPTIMISATIONS

The routing library must support choosing different ways to optimise route calculation; for
example, for shortest distance or shortest time.

See Navigating between two places.

Open question: Does navigation routing need to take current traffic conditions into
account?

5.21 NAVIGATION ROUTING PROVIDES TURN-BY-TURN INSTRUCTIONS

The routing library must be able to return information about waypoints along the way
where navigation actions need to be taken (such as turning off a road) (see Turn-by-turn
navigation directions).

See Navigating between two places.

5.22 3D MAP RENDERING API

For rendering the map and navigation instructions when navigating, a 3D map display
should be provided, which uses a 'bird's view' projection above the vehicle to give
prominence to navigational cues which are coming up sooner.

See Navigating between two places.

5.23 NAVIGATION ROUTING PROVIDES STATISTICS

The routing library must be able to return estimated data, such as the time of arrival,
distance between start and destination locations (along the route), and distance between
current location and destination (along the route).

See Estimated time left in a navigation.

5.24 NAVIGATION ROUTING PROVIDES ROAD INFORMATION

The routing library must provide information about roads which are relevant to the current
set of turn-by-turn navigation instructions, such as road names, road numbers, and major
cities which the roads head towards.

See Navigation road information.

5.25 NAVIGATION ROUTING CAN WAKE UP APPLICATIONS

Application bundles must be able to request signals when:
• reaching a navigation waypoint or destination (this is a form of Error: Reference

source not found, Navigating via waypoints);

• the route is replanned (see Resuming a navigation route);

• the route is cancelled (see Cancelling a navigation route).

It must be possible for these signals to be delivered even if the bundle is no longer
running.

See Deviating off a navigation route, Turning on house lights.

5.26 GEOFENCING API

Application bundles must be able to define arbitrary regions – either arbitrary polygons, or
points with radii – and request a signal when entering, exiting, or dwelling in a region. The
vehicle is dwelling in a region if it has been in there for a specified amount of time without
exiting.

See Cancelling a navigation route, Tasks nearby.

5.27 GEOFENCING SERVICE CAN WAKE UP APPLICATIONS

It must be possible for geofencing signals to be delivered even if the application bundle
which registered to receive them is not currently running.

See Cancelling a navigation route, Tasks nearby.

5.28 NAVIGATION ROUTING MUST BE LOCALE-AWARE

Routing information, such as speed limits, and the side of the road which is driven on,
must be localisable to the country the vehicle is currently in (see Travelling abroad). For
example, the system must report speed limits in the same units as are used on road
signage.

See Travelling abroad.

5.29 GEOCODING API MUST BE LOCALE-AWARE

The geocoding API must support returning results or taking input, such as addresses, in a
localised form. The localisation must be configurable so that, for example, the user’s home
locale could be used, or the locale of the country the vehicle is currently in.

See Travelling abroad.

5.30 GEOLOCATION PROVIDES ERROR BOUNDS

The geolocation API must provide an error bound for each location measurement it
returns, so calling code knows how accurate that data is likely to be.

See Temporary loss of GPS signal.

5.31 GEOLOCATION IMPLEMENTS DEAD-RECKONING

The geolocation API must implement dead reckoning based on the vehicle's previous
velocity, to allow a location to be returned even if GPS signal is lost. This must update the
error bounds appropriately (Geolocation provides error bounds).

See Temporary loss of GPS signal.

5.32 GEOLOCATION USES NAVIGATION DATA IF AVAILABLE

If such data is available, the geolocation API must use navigation data to improve the
accuracy of the location it reports, for example by snapping the GPS location to the nearest
road on the map.

See Navigation-driven refinement of geolocation.

5.33 GEOCODING USES GENERAL POINTS OF INTEREST STREAMS

The geocoding API must be able to query general points of interest streams exposed by
applications to it, and return such points of interest in its result set for forward or reverse

geocoding queries.

See Application-driven refinement of geolocation.

5.34 LOCATION INFORMATION REQUIRES PERMISSIONS TO ACCESS

There are privacy concerns with allowing bundles access to location data. The system
must be able to restrict access to any data which identifies the vehicle’s current, past or
planned location, unless the user has explicitly granted a bundle access to it. The system
may differentiate access into coarse-grained and fine-grained, for example allowing
application bundles to request access to location data at the resolution of a city block, or
at the resolution of tens of centimetres. Note that fine-grained data access must be
allowed for geofencing support, as that essentially allows bundles to evaluate the vehicle’s
current location against arbitrary location queries.

Application bundles asking for fine-grained location data must be subjected to closer
review when submitted to the Apertis application store.

See Malware application bundle.

Open question: What review checks should be performed on application bundles which
request permissions for location data?

5.35 RATE LIMITING OF GENERAL POINT OF INTEREST STREAMS

When handling general point of interest streams generated by applications, the system
must prevent denial of service attacks from the applications by limiting the number of
points of interest they can feed to the geolocation and other services, both in the rate at
which they are transferred, and the number present in the system at any time.

See Excessive results from application-driven refinement of geolocation.

6 EXISTING GEO SYSTEMS
This chapter describes the approaches taken by various existing systems for exposing
sensor information to application bundles, because it might be useful input for Apertis’
decision making. Where available, it also provides some details of the implementations of
features that seem particularly interesting or relevant.

6.1 W3C GEOLOCATION API

The W3C Geolocation API4 is a JavaScript API for exposing the user’s location to web apps.
The API allows apps to query the current location, and to register for notifications of
position changes. Information about the age of location data (to allow for cached
locations) is returned. Information is also provided about the location’s accuracy, heading
and speed.

6.2 ANDROID PLATFORM LOCATION API

The Android platform location API5 is a low-level API for performing geolocation based on
GPS or visible Wi-Fi and cellular networks, and does not provide geofencing or geocoding
features. It allows geolocation and cached geolocation queries, as well as notifications of
changes in location. Its design is highly biased towards making apps energy efficient so
as to maintain mobile battery life.

6.3 GOOGLE LOCATION SERVICES API FOR ANDROID

The Google Location Services API for Android6 is a more fully featured API than the platform
location API, supporting geocoding and geofencing in addition to geolocation. It requires
the device to be connected to the internet to access Google Play services. It hides the
complexity of calculating and tracking the device’s location much more than the platform
location API.

It allows apps to specify upper and lower bounds on the frequency at which they want to
receive location updates. The location service then calculates updates at the maximum of
the frequencies requested by all apps, and emits notifications at the minimum of this and
the app’s requested upper frequency bound.

It also defines the permissions required for accessing location data more stringently,
allowing coarse- and fine-grained access.

6.4 IOS LOCATION AND MAPS API

The iOS Location Services and Maps API7 is available on both iOS and OS X. It supports
many features: geolocation, geofencing, forward and reverse geocoding, navigation

4 http://www.w3.org/TR/geolocation-API/
5 http://developer.android.com/guide/topics/location/strategies.html
6 http://developer.android.com/training/location/index.html
7 https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwareness

PG/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009497-CH1-SW1

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009497-CH1-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009497-CH1-SW1
http://developer.android.com/training/location/index.html
http://developer.android.com/guide/topics/location/strategies.html
http://www.w3.org/TR/geolocation-API/

routing, and local search.

For geolocation, it supports querying the location and location change notifications,
including notifications to apps which are running in the background.

Its geofencing support is for points and radii, and supports entry and exit notifications but
not dwell notifications. Instead, it supports hysteresis based on distance from the region
boundary.

Geocoding uses a network service; both forward and reverse geocoding are supported.

The MapKit API8 provides an embeddable map renderer and widget, including annotation
and overlay support.

iOS (but not OS X) supports using arbitrary apps as routing providers for rendering turn-
by-turn navigation instructions9. An app which supports this must declare which
geographic regions it supports routing within (for example, a subway navigation app for
New York would declare that region only), and must accept routing requests as a URI
handler. The URIs specify the start and destination points of the navigation request.

It also supports navigation routing using a system provider, which requires a network
connection. Calculated routes include metadata such as distance, expected travel time,
localised advisory notices; and the set of steps for the navigation. It supports returning
multiple route options for a given navigation.

The local search API10 differs from the geocoding API in that it supports types of locations,
such as ‘coffee’ or ‘fuel’. As with geocoding, the local search API requires a network
connection.

6.5 GNOME APIS

GNOME uses several libraries to provide different geo-features. It does not have a library
for navigation routing.

6.5.1 GEOCLUE

GeoClue11 is a geolocation service which supports multiple input backends, such as GPS,
cellular network location and Wi-Fi based geolocation.

Wi-Fi location uses the Mozilla Location Service12 and requires network connectivity.

It supports geolocation notifications13 with a minimum distance between notifications,
but no time-based limiting. It does not support geofencing, but the developers are

8 https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwareness
PG/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1

9 https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwareness
PG/ProvidingDirections/ProvidingDirections.html#//apple_ref/doc/uid/TP40009497-CH8-SW5

10 https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwareness
PG/EnablingSearch/EnablingSearch.html#//apple_ref/doc/uid/TP40009497-CH10-SW1

11 http://freedesktop.org/wiki/Software/GeoClue/
12 https://wiki.mozilla.org/CloudServices/Location
13 http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-

signal-org-freedesktop-GeoClue2-Client.LocationUpdated

http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-signal-org-freedesktop-GeoClue2-Client.LocationUpdated
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-signal-org-freedesktop-GeoClue2-Client.LocationUpdated
https://wiki.mozilla.org/CloudServices/Location
http://freedesktop.org/wiki/Software/GeoClue/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/EnablingSearch/EnablingSearch.html#//apple_ref/doc/uid/TP40009497-CH10-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/EnablingSearch/EnablingSearch.html#//apple_ref/doc/uid/TP40009497-CH10-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/ProvidingDirections/ProvidingDirections.html#//apple_ref/doc/uid/TP40009497-CH8-SW5
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/ProvidingDirections/ProvidingDirections.html#//apple_ref/doc/uid/TP40009497-CH8-SW5
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1

interested in implementing it.

GeoClue’s security model allows permissions to be applied to individual apps, and location
accuracy to be restricted on a per-app basis. However, this model is currently incomplete
and does not query the system’s trusted computing base (TCB) (see the Security design
for definitions of the TCB and trust).

6.5.2 GEOCODE-GLIB

Geocode-glib14 is a library for forward and reverse geocoding. It uses the Nominatim API,
and is currently hard-coded to query nominatim.gnome.org1516. It requires network access
to perform geocoding. The Nominatim API17 does not require an API key (though it does
require a contact e-mail address), but it is highly recommended that anyone using it
commercially runs their own Nominatim server.

geocode-glib is tied to a single Nominatim server, and does not support multiple
backends.

6.5.3 LIBCHAMPLAIN

libchamplain18 is a map rendering library, providing a map widget which supports
annotations and overlays. It supports loading or rendering map tiles from multiple
sources.

6.5.4 NAVIT

NavIt19 is a 3D turn-by-turn navigation system designed for cars. It provides a GTK+ or SDL
interface, audio output using espeak, GPS input using gpsd, and multiple map rendering
backends. It seems to expose some of its functionality as a shared library (libnavit), but it
is unclear to what extent it could be re-used as a component in a larger system, without
restructuring work.

6.6 NAVIGATION ROUTING SYSTEMS

Three alternative routing systems are described briefly below; a full analysis based on
running many trial start and destination routing problems against them is yet to be done.

6.6.1 GRAPHHOPPER

GraphHopper20 is a routing system written in Java, which is available as a server or as a
library for offline use. It uses OpenStreetMap data, and is licenced under Apache License
2.0.

14 https://developer.gnome.org/geocode-glib/stable/
15 https://bugzilla.gnome.org/show_bug.cgi?id=756311
16 https://bugzilla.gnome.org/show_bug.cgi?id=756313
17 http://wiki.openstreetmap.org/wiki/Nominatim
18 https://wiki.gnome.org/Projects/libchamplain
19 http://www.navit-project.org/
20 https://graphhopper.com/

https://graphhopper.com/
http://www.navit-project.org/
https://wiki.gnome.org/Projects/libchamplain
http://wiki.openstreetmap.org/wiki/Nominatim
https://bugzilla.gnome.org/show_bug.cgi?id=756313
https://bugzilla.gnome.org/show_bug.cgi?id=756311
https://developer.gnome.org/geocode-glib/stable/

6.6.2 OSRM

OSRM21 is a BSD-licensed C++ routing system, which can be used as a server or as a library
for offline use. It uses OpenStreetMap data.

6.6.3 YOURS

YOURS22 is an online routing system which provides a web API for routing using
OpenStreetMap data.

6.7 NAVSERVER

NavServer is a proprietary middleware navigation solution, which accesses a core
navigation system over D-Bus.

It was not possible to view the documentation or APIs it exposes at the time this design
was written (version 0.2.1).

Open question: What functionality and APIs does NavServer provide?

21 http://project-osrm.org/
22 http://wiki.openstreetmap.org/wiki/YOURS

http://wiki.openstreetmap.org/wiki/YOURS
http://project-osrm.org/

7 APPROACH
Based on the above research (section 6) and requirements (section 5), we recommend the
following approach for integrating geo-features into Apertis. The overall summary is to use
existing Freedesktop.org and GNOME components for all geo-features, adding features to
them where necessary, and adding support for multiple backends to support
implementations in the automotive domain.

7.1 BACKENDS

Each of the geo-APIs described in the following sections will support multiple backends.
These backends must be chosen at compile time. They do not need to be switcheable at
runtime, and app bundles must not be able to choose which backend is being used for a
particular geo-function — that is chosen by the system integrator, who knows better than
the application developer about which geo-backends are available and what their
strengths and weaknesses are.

If there are particular situations where it is felt that the application developer knows
better than the system integrator about the backend to use, that signals a use case which
has not been considered, and might be best handled by a revision of this design and
potentially introducing a new SDK API to expose the backend functionality desired by the
application developer.

Runtime switching of backends would also lead to problems of transferring state between
the old backend and the new one, such as route planning information or GPS location
history.

Backends may be implemented in the IVI domain (for example, the default backends in the
SDK must be implemented in the IVI domain, as the SDK has no other domains), or in the
automotive domain. If a backend is implemented in the automotive domain, its
functionality must be exposed as a proxy service in the IVI domain, which implements the
SDK API. The IPC mechanism for communicating between this proxy service and the
backend itself is not defined in this document. This IPC interface serves as a security
boundary for the backend.

7.2 2D MAP DISPLAY

libchamplain23 should be used for top-down map display. It supports map rendering,
adding markers for the vehicle’s current location, points of interest (with explanatory
labels), and start and destination points. Paths, routes, polygons and region highlights can
be rendered as using Clutter API on custom map layers.

libchamplain supports pre-rendered tiles from online (ChamplainNetworkTileSource)
or offline (ChamplainFileTileSource) sources. It supports rendering tiles locally using
libmemphis, if compiled with that support enabled.

On an integrated system, map data will be available offline on the vehicle's file system. On
the Apertis SDK, an internet connection is always assumed to be available, so map tiles

23 https://wiki.gnome.org/Projects/libchamplain

https://wiki.gnome.org/Projects/libchamplain

may be used from online sources. libchamplain supports both.

7.3 3D MAP DISPLAY

Our initial suggestion is to use NavIt24 for 3D map display and navigation rendering.
However, we are currently unsure of the extent to which it can be used as a library, and the
extent to which it could be integrated with the Apertis navigation routing API. Similarly,
since we have no details on the API exposed by proprietary solutions, such as NavServer
(see section 6.7), which would potentially become backends for it, we cannot yet
recommend an API for 3D map display.

There are two possibilities: libnavit is suitable for use as the SDK 3D map display API, and
we can commit to using it with multiple backends (which might require work to allow new
backends like NavServer to be integrated with it); or libnavit is not suitable, and an
abstraction API needs to be designed to wrap NavIt and NavServer, with this abstraction
API becoming the supported SDK 3D map display API.

7.4 GEOLOCATION

GeoClue25 should be used for geolocation. It supports geolocation using GPS, 3G and Wi-Fi.
It supports accuracy bounds for locations26, but does not pair that with information about
the time of measurement. That would need to be added as a new feature. Cached locations
are not supported; that would also need to be added. Similarly, dead-reckoning of the
location based on previous velocity is not supported for when GPS signal is lost. That
would need to be added as a feature.

Speed, altitude and bearing information are supported27.

Multiple backends are supported, so closed source as well as open source backends could
be used.

If the navigation backend implements a snap-to-road feature, it should be used as a
further source of input to GeoClue for refining the location.

7.5 GEOLOCATION SIGNALS

GeoClue emits a LocationUpdated signal28 whenever the vehicle’s location changes
more than the DistanceThreshold29. GeoClue currently does not support rate limiting
emission of the LocationUpdated signal for minimum and maximum times between
updates. That would need to be added to it.

24 http://www.navit-project.org/
25 http://freedesktop.org/wiki/Software/GeoClue/
26 http://www.freedesktop.org/software/geoclue/docs/gdbus-

org.freedesktop.GeoClue2.Location.html#gdbus-property-org-freedesktop-GeoClue2-Location.Accuracy
27 http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Location.html
28 http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-

signal-org-freedesktop-GeoClue2-Client.LocationUpdated
29 http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-

property-org-freedesktop-GeoClue2-Client.DistanceThreshold

http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-property-org-freedesktop-GeoClue2-Client.DistanceThreshold
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-property-org-freedesktop-GeoClue2-Client.DistanceThreshold
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-signal-org-freedesktop-GeoClue2-Client.LocationUpdated
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-signal-org-freedesktop-GeoClue2-Client.LocationUpdated
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Location.html
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Location.html#gdbus-property-org-freedesktop-GeoClue2-Location.Accuracy
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Location.html#gdbus-property-org-freedesktop-GeoClue2-Location.Accuracy
http://freedesktop.org/wiki/Software/GeoClue/
http://www.navit-project.org/

7.6 NAVIGATION ROUTING

Navigation routing could either be implemented on the system as a library, in which case
it would be instantiated separately for each app which uses it; or it could be instantiated
as a single system service. This would save memory, at the cost of requiring all navigation
routing data (the parameters to and return value from routing queries30) to be sent over D-
Bus. As these values are typically sent over a HTTP interface for online routing queries
anyway, this is perfectly feasible.

We suggest implementing the new system service to calculate navigation routes and track
the vehicle's progress on them. By using a system service, routing, turn-by-turn navigation
and TTS output of instructions can continue while another application is in the foreground
on the IVI system.

The service should support different backends, using only one of them at once. This allows
for routing software from the automotive domain to be exposed to applications via the
routing API.

For supporting offline routing, we recommend OSRM as the default backend, pending
trialling it against some example routing queries to check whether it produces optimal
routes.

OSRM supports routing between two locations, with via-points31. Updating the route as the
journey progresses can be done by re-running the routing query, starting from the
vehicle’s current location.

OSRM returns a route_summary with estimated data about the trip distance and time. It
returns turn-by-turn directions; and alternative routes if requested.

We recommend the D-Bus API of the routing service mirrors that provided by OSRM, as it
has a sensible API design already.

We suggest that this API is kept separate from the 3D map API (see section 7.3), so that
routing can be performed without necessarily rendering it on screen. However, as this is a
common use case, the two APIs should integrate easily as well (for example, having the
same format for turn-by-turn instructions).

7.7 LOCALISATION OF GEOCODING

OpenStreetMap can provide localised forms of place names32, although the necessary data
may not be in the database for all places. The convention is for place names to be stored in
the local dialect by default, so this would only cause a problem for translation to the
driver’s language. i.e. By default, OpenStreetMap data should match on-road signage.

Nominatim supports exporting localised place names from OpenStreetMap, but geocode-
glib does not currently expose that data in its query results. It would need to be modified
to support this.

30 https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#user-content-service-viaroute
31 https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#user-content-service-viaroute
32 http://wiki.openstreetmap.org/wiki/Map_internationalization

http://wiki.openstreetmap.org/wiki/Map_internationalization
https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#user-content-service-viaroute
https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#user-content-service-viaroute

7.8 LOCALISATION OF ROUTING INFORMATION

Routing information is present in OpenStreetMap, but default values (such as which side
of the road to drive on by default, or speed limits for certain types of road) are not present;
only the exceptions are present. A database of world road system defaults is needed, and
might be provided by the navigation routing library.

OSRM does not accept any localisation parameters, so we must assume it returns the
default OpenStreetMap names for places, which should match those on road signage.

It returns turn-by-turn navigation instructions33 as structured data, which the routing
service can then format as required, potentially into multiple localised textual forms plus
other forms for TTS output.

7.9 FORWARD AND REVERSE GEOCODING

We recommend that geocode-glib34 is used as the SDK geocoding API. geocode-glib is
currently hard-coded to use GNOME's Nominatim service; it would need to be modified to
support multiple backends, such as an Apertis-specific Nominatim server35, or a
geocoding service from the automotive backend. It should support querying multiple
backends in parallel so that general point of interest streams can be queried.

The geocode-glib API supports forward and reverse geocoding, but does not support
limiting search results to a radius around given coordinates. This feature would need to be
added to geocode-glib, but not necessarily to the backends themselves.

On an integrated system, geocoding data will be available offline on the vehicle's file
system. This can be used by a custom backend for geocode-glib. On the Apertis SDK, an
internet connection is always assumed to be available, so geocoding may be performed
using an online Nominatim backend. In both cases, geocode-glib would form the SDK API
used by apps.

General point of interest streams could be fed into geocode-glib via another new backend,
queried in parallel with other backends.

7.10 ADDRESS COMPLETION

Nominatim does not provide address completion services, but it is possible to implement
them using a filtered version of the OpenStreetMap database data. An example is available
as Photon36.

As address completion must be available when offline, the implementation should be a
local C library which auto-completes from locally downloaded OpenStreetMap data. This
would need to be written from scratch, including a system for generating the local data
files from OpenStreetMap exports.

The system must support loading address completion data from multiple backends, one

33 https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#user-content-example-2
34 https://developer.gnome.org/geocode-glib/stable/
35 http://wiki.openstreetmap.org/wiki/Nominatim
36 http://photon.komoot.de/

http://photon.komoot.de/
http://wiki.openstreetmap.org/wiki/Nominatim
https://developer.gnome.org/geocode-glib/stable/
https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#user-content-example-2

of which would be the local OpenStreetMap data. Other backends may be proprietary,
online or offline.

7.11 ROUTE ALERTS

Signals for route replanning and cancellation can be emitted as D-Bus signals. Apps which
wish to receive them would have to register as separate clients of the routing service, as in
the GeoClue API37. This allows different signals to be emitted to different apps depending
on their permissions.

Delivery of signals to bundles which are not currently running may cause activation of that
app38.

7.12 GEOFENCING

We recommend that GeoClue is modified upstream to implement geofencing of arbitrary
regions. Signals on entering or exiting a geofenced area should be emitted as a D-Bus
signal which the app bundle subscribes to. Delivery of signals to bundles which are not
currently running may cause activation of that app39.

We have informally discussed the possibility of adding geofencing with the GeoClue
developers, and they are in favour of the idea.

7.13 LOCATION SECURITY

libchamplain is a rendering library, and does not give access to sensitive information.

geocode-glib is a thin interface to a web service, and does not give access to sensitive
information. All web service requests must be secured with best web security practices,
such as correct use of HTTPS, and sending a minimum of identifiable information to the
web service.

GeoClue provides access to sensitive information about the vehicle’s location. It currently
allows limiting the accuracy provided to apps as specified by the user40; this could be
extended to implement a policy determined by the capabilities requested in the app’s
manifest.

Similarly for GeoClue’s geofencing feature, when it is it added — clients have separated
access to its D-Bus API to allow them to be signalled at different accuracies and rates. This
applies to navigation routing as well, as it may provide feedback to applications about
progress along a route, which exposes information about the vehicle's location.

Application bundles asking for fine-grained location data should be subjected to closer
review when submitted to the Apertis application store.

37 http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html
38 This is intended to be provided by a system service for activation of applications based on subscribed

signals; the design is tracked in https://phabricator.apertis.org/T605.
39 This is intended to be provided by a system service for activation of applications based on subscribed

signals; the design is tracked in https://phabricator.apertis.org/T605.
40 http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-

property-org-freedesktop-GeoClue2-Client.RequestedAccuracyLevel

http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-property-org-freedesktop-GeoClue2-Client.RequestedAccuracyLevel
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html#gdbus-property-org-freedesktop-GeoClue2-Client.RequestedAccuracyLevel
https://phabricator.apertis.org/T605
https://phabricator.apertis.org/T605
http://www.freedesktop.org/software/geoclue/docs/gdbus-org.freedesktop.GeoClue2.Client.html

7.14 SYSTEMIC SECURITY

As the geo-features can source information from application bundles, they form part of
the security boundary around application bundles.

In order to avoid denial of service attacks from an application bundle which emits too
much data as, for example, a general point of interest stream, the system should rate limit
such streams in time (number of POIs per unit time) and space (number of POIs per map
area).

Location updates emitted by GeoClue must be rate limited between the minimum and
maximum distance and time limits set by each client. These limits must be checked to
ensure that a client is not requesting updates too frequently.

For the components in the system which provide access to sensitive information (the
vehicle's location), a security boundary needs to be defined between them and application
bundles. Geolocation, navigation routing and geofencing are the sensitive APIs — these are
all implemented as services, so the D-Bus APIs for those services form the security
boundary.

7.15 REQUIREMENTS

This design fulfils the following requirements:

• 5.1: Geolocation API — use GeoClue

• 5.2: Geolocation service supports signals — use GeoClue; augment its signals

• 5.3: Geolocation implements caching — to be added to GeoClue

• 5.4: Geolocation supports backends — GeoClue supports backends

• 5.5: Navigation routing API — new routing service exposing an API similar to OSRM's

• 5.6: Navigation routing supports backends — routing service will support backends

• 5.7: Type-ahead search and address completion supports backends — to be
implemented as a new address completion library

• 5.8: Geocoding supports backends — to be added to geocode-glib

• 5.9: SDK has default implementations for all backends — Gypsy for geolocation;
custom online Nominatim server for geocoding; online OpenStreetMap for 2D maps;
libnavit for 3D maps, subject to further evaluation; OSRM for navigation routing;
new offline OpenStreetMap database for address completion

• 5.10: SDK APIs do not vary with backend — GeoClue API for geolocation; geocode-glib
for geocoding; libchamplain for 2D maps; libnavit for 3D maps, subject to further
evaluation; routing service API for navigation routing; new library for address
completion

• 5.11: Navigation routing supports vehicle types — OSRM supports multiple vehicle
modes; routing API is based on OSRM

• 5.12: Navigation routing supports alternative routes — OSRM supports alternative
routes; routing API is based on OSRM

• 5.13: Turn-by-turn instructions are suitable for TTS — OSRM returns routes as non-
locale-dependent data structures

• 5.14: TTS route guidance must be implemented as a service — routing API is
implemented as a service

• 5.15: 2D map rendering API — use libchamplain with a local or remote tile store

• 5.16: Reverse geocoding API — use geocode-glib

• 5.17: Forward geocoding API — use geocode-glib

• 5.18: Type-ahead search and address completion API — to be written as a new C
library

• 5.19: Navigation routing supports waypoints — OSRM supports waypoints; routing
API is based on OSRM

• 5.20: Navigation routing supports different optimisations — OSRM does not support
this, it only supports shortest route calculations; other backends may support it

• 5.21: Navigation routing provides turn-by-turn instructions — OSRM provides turn-
by-turn instructions; routing API is based on OSRM

• 5.22: 3D map rendering API — use libnavit, subject to further evaluation

• 5.23: Navigation routing provides statistics — OSRM provides statistics; routing API
is based on OSRM

• 5.24: Navigation routing provides road information — OSRM provides road names
and directions; routing API is based on OSRM

• 5.25: Navigation routing can wake up applications — to be implemented as signals
from routing service to registered applications

• 5.26: Geofencing API — to be implemented as a new feature in GeoClue

• 5.27: Geofencing service can wake up applications — to be implemented as a new
feature in GeoClue

• 5.28: Navigation routing must be locale-aware — OSRM exposes OpenStreetMap
localised data

• 5.29: Geocoding API must be locale-aware — to be added to geocode-glib to expose
existing OpenStreetMap localised data

• 5.30: Geolocation provides error bounds — GeoClue provides accuracy information,
but it needs augmenting

• 5.31: Geolocation implements dead-reckoning — to be added to GeoClue

• 5.32: Geolocation uses navigation data if available — to be added as another
backend to GeoClue

• 5.33: Geocoding uses general points of interest streams — to be implemented as
another new backend for geocode-glib

• 5.34: Location information requires permissions to access — to be implemented as
manifest permissions for application bundles

• 5.35: Rate limiting of general point of interest streams — security boundary
implemented as D-Bus API boundary; rate limiting applied on signal emission and
processed general point of interest streams

7.16 SUGGESTED ROADMAP

As the SDK APIs for geo-features are, for the most part, provided by FOSS components
which are available already, the initial deployment of geo-features requires GeoClue,
geocode-glib, libchamplain and OSRM to be packaged for the distribution, if they are not
already. The initial deployment would also require a routing service and address
completion library to be written.

The second phase would require modification of these packages to implement missing
features and implement additional backends. This can happen once the initial packaging
is complete, as the packages fulfil most of Apertis’ requirements in their current state.

This second phase includes modifying the packages to be container-friendly, so that they
can be used by compartmentalised apps without leaking sensitive data from one app to
another. This requires further in-depth design work, but should require fairly self-
contained changes.

8 OPEN QUESTIONS
1. 5.15: Should map rendering be done client-side (vector maps) or pre-computed

(raster maps)?

2. 5.20: Does navigation routing need to take current traffic conditions into account?

3. 5.34: What review checks should be performed on application bundles which
request permissions for location data?

4. 6.7: What functionality and APIs does NavServer provide?

9 SUMMARY OF RECOMMENDATIONS
As discussed in the above sections the recommendations are:

• Packaging and using libchamplain for 2D map display.

• Packaging and using libnavit for 3D map display, subject to further investigation.

• Packaging and using GeoClue for geolocation. It needs measurement times, cached
location support and dead-reckoning to be added upstream.

• Adding minimum and maximum update periods for clients to upstream GeoClue,
alongside the existing distance threshold API for location update signals.

• Adding support for geofencing to upstream GeoClue.

• Adding a new navigation backend to GeoClue to implement snap-to-road refinement
of its location.

• Packaging and using geocode-glib for forward and reverse geocoding. It needs
support for exposing localised place names to be added upstream.

• Add support for limiting results to a given area to geocode-glib.

• Adding support for multiple backends to geocode-glib.

• Implementing a general point of interest stream backend for geocode-glib using the
Apertis point of interest APIs.

• Auditing geocode-glib to ensure it maintains data privacy by, for example, using TLS
for all requests.

• Implementing a local library for address completion using vehicle-side
OpenStreetMap data; plus a system for generating the local data files.

• Implementing a routing service with its D-Bus API based on OSRM's API, supporting
route queries and alerts.

• Packaging and using OSRM for offline navigation routing, as a backend for the new
routing service.

• Integrating GeoClue, the routing service and the geocoding service with the app
service proxy to apply access control rules to whether apps can communicate with
it to retrieve potentially sensitive location data. Only permit this if the appropriate
coarse- or fine-grained location permission has been set on the application
bundle’s manifest.

	Document Change Log
	1 Introduction
	2 Terminology and concepts
	2.1 Coordinates
	2.2 Geolocation
	2.3 Forward geocoding
	2.4 Reverse geocoding
	2.5 Geofencing
	2.6 Route planning
	2.7 Route replanning
	2.8 Route cancellation
	2.9 Point of interest
	2.10 Text-to-speech (TTS)

	3 Use cases
	3.1 Relocating the vehicle
	3.2 Automotive backend
	3.2.1 Custom automotive backend functionality

	3.3 SDK backend
	3.4 Different types of vehicle
	3.5 Route calculation for public transport
	3.6 Audio-only route guidance
	3.7 Viewing an address on the map
	3.8 Finding the address of a location on the map
	3.9 Type-ahead search and completion for addresses
	3.10 Navigating between two places
	3.11 Changing destination during navigation
	3.12 Navigating via waypoints
	3.13 Estimated time left in a navigation
	3.14 Deviating off a navigation route
	3.15 Changing navigation route due to traffic conditions
	3.16 Turn-by-turn navigation directions
	3.17 Navigation road information
	3.18 Resuming a navigation route
	3.19 Cancelling a navigation route
	3.20 Tasks nearby
	3.21 Turning on house lights
	3.22 Travelling abroad
	3.23 Temporary loss of GPS signal
	3.24 Look up the address of a contact
	3.25 Navigation-driven refinement of geolocation
	3.26 Application-driven refinement of geolocation
	3.26.1 Excessive results from application-driven refinement of geolocation

	3.27 Malware application bundle

	4 Non-use-cases
	4.1 POI data
	4.2 Beacons
	4.3 Loading map tiles from a backend

	5 Requirements
	5.1 Geolocation API
	5.2 Geolocation service supports signals
	5.3 Geolocation implements caching
	5.4 Geolocation supports backends
	5.5 Navigation routing API
	5.6 Navigation routing supports backends
	5.7 Type-ahead search and address completion supports backends
	5.8 Geocoding supports backends
	5.9 SDK has default implementations for all backends
	5.10 SDK APIs do not vary with backend
	5.11 Navigation routing supports vehicle types
	5.12 Navigation routing supports alternative routes
	5.13 Turn-by-turn instructions are suitable for TTS
	5.14 TTS route guidance must be implemented as a service
	5.15 2D map rendering API
	5.16 Reverse geocoding API
	5.17 Forward geocoding API
	5.18 Type-ahead search and address completion API
	5.19 Navigation routing supports waypoints
	5.20 Navigation routing supports different optimisations
	5.21 Navigation routing provides turn-by-turn instructions
	5.22 3D map rendering API
	5.23 Navigation routing provides statistics
	5.24 Navigation routing provides road information
	5.25 Navigation routing can wake up applications
	5.26 Geofencing API
	5.27 Geofencing service can wake up applications
	5.28 Navigation routing must be locale-aware
	5.29 Geocoding API must be locale-aware
	5.30 Geolocation provides error bounds
	5.31 Geolocation implements dead-reckoning
	5.32 Geolocation uses navigation data if available
	5.33 Geocoding uses general points of interest streams
	5.34 Location information requires permissions to access
	5.35 Rate limiting of general point of interest streams

	6 Existing geo systems
	6.1 W3C Geolocation API
	6.2 Android platform location API
	6.3 Google Location Services API for Android
	6.4 iOS Location and Maps API
	6.5 GNOME APIs
	6.5.1 GeoClue
	6.5.2 Geocode-glib
	6.5.3 libchamplain
	6.5.4 NavIt

	6.6 Navigation routing systems
	6.6.1 GraphHopper
	6.6.2 OSRM
	6.6.3 YOURS

	6.7 NavServer

	7 Approach
	7.1 Backends
	7.2 2D map display
	7.3 3D map display
	7.4 Geolocation
	7.5 Geolocation signals
	7.6 Navigation routing
	7.7 Localisation of geocoding
	7.8 Localisation of routing information
	7.9 Forward and reverse geocoding
	7.10 Address completion
	7.11 Route alerts
	7.12 Geofencing
	7.13 Location security
	7.14 Systemic security
	7.15 Requirements
	7.16 Suggested roadmap

	8 Open questions
	9 Summary of recommendations

