
Apertis Preferences
and Persistence

Design

Author: Philip Withnall
Contributors: Simon McVittie, Gustavo Noronha, Guillaume

Desmottes
Version: 0.3.02.3
Status: Draft
Date: 2015-11-2516
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.3.0 2015-11-25 • Expand background sections (4).
• Give alternative designs for the system preferences

application (5.1.5)
• Clarify recommendation to store secrets and passwords

via a different API

0.2.3 2015-11-16 • Delete obsolete document properties
• Improve language

0.2.2 2015-10-20 • Clarify wording of rollback sections.

0.2.1 2015-10-14 • Add cross-references to the System Updates and
Rollback design for the rollback requirement (3.3).

• Clarify system and app bundle upgrades requirement
(3.4).

0.2.0 2015-06-01 • Add references to the Robustness Design document.
• Add Rollback (3.3), Transactional updates (3.9) and

Storage of user secrets and passwords (3.16)
requirements.

• Expand Factory reset requirement (3.5) to cover clearing
a single (user, app) pair.

• Clarify suggestions regarding templated preference UIs.
• Clarify that apps are responsible for upgrading their

own schemas.

0.1.0 2015-05-12 • New document to summarise discussions from various
bug reports.

Version Date Changes

0.2.3 2015-11-16 • Delete obsolete document properties
• Improve language

0.2.2 2015-10-20 • Clarify wording of rollback sections.

0.2.1 2015-10-14 • Add cross-references to the System Updates and
Rollback design for the rollback requirement (3.3).

• Clarify system and app bundle upgrades requirement
(3.4).

0.2.0 2015-06-01 • Add references to the Robustness Design document.
• Add Rollback (3.3), Transactional updates (3.9) and

Storage of user secrets and passwords (3.16)
requirements.

• Expand Factory reset requirement (3.5) to cover clearing
a single (user, app) pair.

• Clarify suggestions regarding templated preference UIs.
• Clarify that apps are responsible for upgrading their

own schemas.

0.1.0 2015-05-12 • New document to summarise discussions from various
bug reports.

Table of Contents
 Document Change Log..2
1 Introduction..5
2 Terminology and concepts..6

2.1 System Settings..6
2.2 User settings...6
2.3 App settings...6
2.4 Preferences...6
2.5 User services...6
2.6 Persistent data..6
2.7 Secondary storage..7
2.8 GSettings...7
2.9 AppArmor..7

3 Requirements..8
3.1 Access permissions...8
3.2 Writability..8
3.3 Rollback...8
3.4 System and app bundle upgrades..9
3.5 Factory reset..9
3.6 Abstraction level..9
3.7 Minimising I/O bandwidth..9
3.8 Atomic updates..9
3.9 Transactional updates...10
3.10 Performance tradeoffs...10
3.11 Data size tradeoffs..10
3.12 Race conditions..10
3.13 Vendor overrides..10
3.14 Vendor lockdown..10
3.15 User interface...11
3.16 Storage of user secrets and passwords..11

4 Existing preferences systems..12
4.1 GNOME Linux desktop..12

4.1.1 Preferences...12
4.1.2 Persistent data..13
4.1.3 Secrets and passwords..13

4.2 Android..13
4.2.1 Preferences..13
4.2.2 Persistent data...14
4.2.3 Secrets and passwords..14

4.3 iOS...15
4.3.1 Preferences..15
4.3.2 Persistent data...15
4.3.3 Secrets and passwords..16

4.4 GENIVI...16
4.4.1 Preferences and persistent data...16

4.4.2 Secrets and passwords...17
5 Approach..18

5.1 Preferences architecture...18
 Requirements...19

5.1.1 Proxied dconf backend...20
 Requirements...21

5.1.2 Development backend..21
 Requirements...21

5.1.3 Key-file backend..22
 Requirements..23

5.1.4 Security policy...23
5.1.5 User interface..23

 Alternative model 1: embedding preferences for individual applications in the
system preferences application..25
 Alternative model 2: linking to individual applications from the system
preferences application..26

5.1.6 Existing preferences schemas..26
5.2 Persistent data architecture..27

5.2.1 Well-known state directories...27
5.2.2 Recommended serialisation APIs...28

 GKeyFile..28
 GVDB..28
 SQLite..29
 GNOME-DB..29

5.2.3 When to save persistent data...29
5.2.4 Recently used and favourite items..30

6 Summary of recommendations...31

1 INTRODUCTION
This documents how system services and apps in Apertis may store preferences and
persistent data. It considers the security architecture for storage and access to these data;
separation of schemas, default values and user-provided values; and guidelines for how to
present preferences in the UI.

The Applications Design, and Global Search Design documents are relevant reading.
Sections 5.3.1 and 7 of the Applications Design and section 6.3 of the Global Search Design
reference the need for storage of persistent data for apps. See section 5.2 for a design
covering this.

The Robustness Design document gives more detail on the requirements for robustness of
secondary storage in the face of power loss.

2 TERMINOLOGY AND CONCEPTS

2.1 SYSTEM SETTINGS

A system setting is one which does not vary by user, and applies to the entire system. For
example, networking settings. This document considers system settings which must be
readable by multiple components — settings which are solely for the use of a single
system service are out of scope, and may be stored in whichever way that service wishes
(typically as a configuration file in /etc). This is particularly important for sensitive
settings, for example the shadow user database in /etc/shadow, which must not be
readable by anything except the system authentication service (PAM).

2.2 USER SETTINGS

A user setting is one which does vary by user, but not by app. User settings apply to the
whole of a user's session. For example, the language or theme.

2.3 APP SETTINGS

An app setting is one which varies by user and also by app. Throughout this document, the
term ‘app’ is used to mean an app-bundle, including the UI and any associated agent
programs, analogous to an Android .apk, with a single security domain shared between all
executables in the bundle. The precise terminology is currently under discussion, and this
document will be updated to reflect the result of that.

App settings apply only to a specific app, and would not make sense outside the context of
that app. For example, whether to enable shuffling tracks in the media player; whether to
open hyperlinks in a new tab by default in the web browser; or the details for accessing a
user's e-mail account.

2.4 PREFERENCES

'Preferences' is the general term for system, user and app settings. The terms 'preference'
and 'setting' will be used interchangeably throughout this document.

2.5 USER SERVICES

A user service is as defined in the Multiuser Design document — a service that runs on
behalf of a particular user. Throughout this document, this is additionally assumed to
mean a platform user service, which is not tied to a particular app-bundle. The alternative
is an agent user service, which this document considers part of an app-bundle, with the
same access to settings as the app-UI.

2.6 PERSISTENT DATA

Persistent data is app state which persists across multiple user sessions. For example,
documents which the user has written, or the state of the user's pending downloads.

One distinguishing factor between preferences and persistent data is that vendors may
override the default values for preferences (see section 3.13), but not for persistent data.
For example, a vendor would not want to override information about in-progress
downloads; but they might want to override the default background image filename for a
user.

The persistent data for an app may be the same as the data it shares between user
sessions, or may differ. The difference between persistent data and data for sharing
between apps is discussed in the Multiuser Design document.

Persistent data is stored on secondary storage, whereas shared data is expected to be
passed in memory — so while the sets of data are the same, the mechanisms used to
handle them are different. Persistent data is always private to an app, and cannot be read
by another app or user.

Persistent data might cover all state in an application — such that restoring its persistent
data when starting the application is sufficient to make it appear as if it had been
suspended, rather than exited. Or persistent data might cover some subset of this. The
decision is up to the application authors.

2.7 SECONDARY STORAGE

A flash disk, hard disk, or other persistent data storage medium which can be used by the
system. This term has been chosen rather than the more common persistent storage to
avoid confusion with persistent data.

2.8 GSETTINGS

GSettings1 is an interface provided by GLib for accessing settings. As an interface, it can be
backed by different storage backends — the most common is dconf, but a key file backend
is available for storage in simple key files.

GSettings uses a concept of 'schemas', which define available settings, their data types,
and their default values. Each setting is strictly typed and must have a default value. A
schema has an ID, and is 'instantiated' at one or more schema paths. Typically, a schema
will be instantiated at a single path, but may be instantiated at multiple paths to support
storing the same settings for multiple objects — for example, a server name, username
and protocol to use assword for multiple different e-mail accounts.

2.9 APPARMOR

AppArmor2 is an access control framework used by Apertis to enforce fine-grained
permissions across the entire system, restricting which files each process can open.

1 https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
2 http://apparmor.net/

https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
http://apparmor.net/

3 REQUIREMENTS

3.1 ACCESS PERMISSIONS

Access controls must be enforceable on preferences. Read and write permissions must be
available. It is assumed that if a component has read permission for a preference, it may
also be notified of any changes to that preference's value. It is assumed that if a
component has write permission for a preference, it may also reset that preference.

A suggested security policy for preferences implements a downwards flow for reads:

• Apps may read their own app settings, user settings for the current user, and all
system settings.

• User services may read their own app settings, user settings for the current user,
and all system settings.

• System services may read their own app settings, and all system settings.

Writes are generally only allowed at the same level:

• Apps may write their own app settings.

• User services may write user settings for the current user.

• System services may write system settings for all users, user settings for any user,
and app settings for any app for any user.

Note that apps must not be able to read or write each others' settings. Similarly for user
services and system services.

Persistent data is always private to a (user, app) pair, though it can be accessed by user
services and system services.

3.2 WRITABILITY

As well as the value of a preference, components must be able to find out whether the
preference is writable. A preference may be read-only if the component doesn't have write
permission for it (section 3.1) or if it is locked down by the vendor (section 3.14).

This does not apply to persistent data, which is always read–write by the (user, app) pair
which owns it.

3.3 ROLLBACK

As per section 4.1.5 of the Applications Design document, and section 6 of the System
Update and Rollback Design document, applications must support rollback to a previously
installed version, including restoring the user’s settings for that application by reverting
the stored preferences to those from the earlier version. The storage backends for the
preferences and persistence APIs must support restoring stored preferences from an
earlier version — they should not support context-sensitive conversion of newer
preferences to older ones.

Applications do not have to support running with preferences or persistent data from a
newer version than the application code.

3.4 SYSTEM AND APP BUNDLE UPGRADES

As per the Applications Design and the System Update and Rollback design, applications
must also support upgrading preferences and persistent data from previous application
versions to the current version.

They do not need to support downgrading preferences or persistent data by converting it
from a newer version to an older one.

3.5 FACTORY RESET

The system must provide some means for the user to reset the state of all apps to a
factory default for a particular user, or for all users. This is necessary for supporting
removing user accounts, refreshing the car for transfer to a new owner, or clearing the
state of a temporary guest account (see the Multiuser Design document). Similarly, it
must support clearing the state of a single (user, app) pair.

The factory reset must support resetting preferences, persistent data, or both.

3.6 ABSTRACTION LEVEL

The preferences and persistent data APIs may want to abstract the underlying storage
backend, for example to support uniform access to preferences stored in multiple
locations. If so, details of the underlying storage backend must not be present in the
abstraction (a 'leaky abstraction') — for example, SQL fragments must not be used in the
interface, as they tie the implementation to an SQL-based backend and a specific schema.

Conversely, any more than one layer of abstraction is an unnecessary complication.

3.7 MINIMISING I/O BANDWIDTH

As with all components which use secondary storage, the preferences and persistent data
stores should minimise the I/O load they impose on secondary storage. This is a particular
concern at system startup, where typically a lot of data must be loaded from secondary
storage, and hence I/O read efficiency is important.

3.8 ATOMIC UPDATES

The system must make atomic writes to secondary storage, so that preferences or
persistent data are not corrupted or lost if power is lost part-way through saving changes.

An atomic write is one where the stored state is either the old state, or the new state, but
never an intermediate between the two, and never missing entirely. In other words, if power
is lost while updating a preference, upon rebooting either the old value of the preference
must be loadable, or the new value must be loadable.

See the Robustness Design document, 3.1.1 for more details on general robustness §
requirements.

3.9 TRANSACTIONAL UPDATES

The system must allow updates to preferences to be wrapped in transactions, such that
either all of the preferences within a transaction are updated, or none of them are.
Transactions must be revertable being being applied permanently.

3.10 PERFORMANCE TRADEOFFS

Preferences are typically written infrequently and read frequently; access patterns for
persistent data depend on the app. The implementation should play to those access
patterns, for example by using locking which favours readers over writers.

3.11 DATA SIZE TRADEOFFS

It is not expected that preference values will be large — a few tens of kilobytes at most.
Conversely, persistent data may range in size from a few bytes to many megabytes. The
implementation should use a storage format suitable to the expected data size.

3.12 RACE CONDITIONS

As system preferences may affect security policy, reading them should be race free,
particularly from time-of-check-to-time-of-use races3. For example, if a preference is
changed by process C while process R is reading it, process R must either see the new
value of the preference, or see the old value of the preference and subsequently be notified
that it has changed.

Similarly for persistent data.

3.13 VENDOR OVERRIDES

It may be desirable to support vendor overrides, where a vendor shipping Apertis can change
the default values of the (app, user or system) preferences before shipping to the end user.
For example, they may change the default background image shown to the user.

If these are supported, resetting a preference to its default value (for example, if doing a
factory reset, section 3.5) must restore it to the vendor-supplied default, rather than the
Apertis default. There is no need to be able to access the Apertis default at any time.

This does not apply to persistent data.

3.14 VENDOR LOCKDOWN

It may also be desirable to support vendor lockdowns, where a vendor shipping Apertis can
lock a preference so that end users may not change it. For example, they may wish to lock

3 http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

the URI which is checked for system updates.

This does not apply to persistent data.

3.15 USER INTERFACE

There must be some user interface (UI) for setting preferences. This may be provided by a
special preferences app, or as a separate window in each app, or a combination of the two.

This does not apply to persistent data.

3.16 STORAGE OF USER SECRETS AND PASSWORDS

There must be a secure way to store user secrets and passwords, which preserves
confidentiality of these data. This may be separate from the main preferences or
persistent data stores.

4 EXISTING PREFERENCES SYSTEMS
This chapter describes the conceptual model, user experience and design elements used
in various non-Apertis operating systems' support for preferences and persistent data,
because it might be useful input for decision-making. Where available, it also provides
some details of the implementations of features that seem particularly interesting or
relevant.

4.1 GNOME LINUX DESKTOP

4.1.1 PREFERENCES

On a modern GNOME desktop, from which Apertis uses a lot of components, settings are
stored in multiple places.

• System settings: Stored in /etc by each system service, typically in a text file with
a service-specific format. A lot of them have a system-wide default value, and may
be overridden per user (for example, each user can set their own timezone and
locale, with a system-wide default).

• User settings: Defined by shared GSettings schemas (such as
org.gnome.system.locale), or schemas specific to individual user services
(such as org.freedesktop.Tracker). The values are stored in dconf (see below).

• App settings: Defined by app-specific GSettings schemas. The values are stored in
dconf (see below).

dconf supports multiple layered databases4, each stored separately. For each settings key,
a value set for it in one layer overrides any values set in the layers below. The bottom (read-
only) layer is always the set of default values which are provided by the schema file. This
layered approach allows the system administrator to change settings system-wide in a
system database, but also allows users to override those settings in their per-user
database. It allows a user to reset all their settings by deleting their per-user database — at
which point, the values from the next layer down (typically either a system database or the
defaults from schema files) will be used for all settings keys.

Lockdown5 is supported in dconf in the opposite direction: keys may be locked down at a
particular level, and may not be set at levels above that one (but may be set at levels below
it, as defaults).

Architecturally, dconf allows direct read-only access to all databases — each app reads
settings values directly from the database. Writes to the databases are arbitrated through
a per-user dconf daemon which then forces each app to refresh its read-only view of the
settings. This allows for fast concurrent reads of settings, at the cost of making writes
expensive.

dconf does not support access controls, and does not support storing different schemas in
different databases at the same layer. Hence a user either has write access to the whole of
a system database, or write access to none of it. As the dconf daemon runs per user, any

4 https://developer.gnome.org/dconf/unstable/dconf-overview.html
5 https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7
https://developer.gnome.org/dconf/unstable/dconf-overview.html

app accessing the daemon may write to any settings key, either its own app settings,
another app's settings, or the user's settings.

4.1.2 PERSISTENT DATA

Persistent data is stored in application-defined formats, in application-defined locations,
although many follow the XDG Base Directory Specification6, which puts cache data in
XDG_CACHE_HOME (typically ~/.cache) and non-cache data in XDG_DATA_HOME (typically
~/.local/share). Below these two directories, applications create their own directories
or files as they see fit. There is no security separation between applications, but the
normal UNIX permissions restrict access to only the current user.

There are no APIs available in GNOME for automatically persisting an entire application’s
state — if an application wishes to do this, it must implement its own serialisation and
deserialisation functions and save to a file, as above.

4.1.3 SECRETS AND PASSWORDS

On a GNOME or KDE desktop, all user secrets, passwords and credentials are stored using
the Secret Service API7. In GNOME, this API is implemented by GNOME Keyring; in KDE, by
KWallet.

The API8 allows storage of byte array ‘secrets’ (such as passwords), along with non-secret
attributes used to look them up, in an encrypted storage file which must be unlocked by
the user before it can be accessed by applications. Unlocking it may be automatic if the
user does not set a password on the file (or if the password is identical to the user’s login
password). Secrets are stored in ‘collections’, which may group them for different
purposes, and which are encrypted separately.

An application must open a session with the secret service in order to access secrets. The
session may be used to encrypt secrets while they are in transit between the service and
application, and allows for algorithm negotiation for this purpose.

For certain actions, the secret service may need to interact directly with the user in order
to establish a trusted path to the user, and avoid (for example) requiring the user to enter
their password into a potentially untrusted application for that application to forward it to
the service.

4.2 ANDROID

4.2.1 PREFERENCES

Apps can use the SharedPreferences class9 to read and write preferences from named
preferences files, with apps typically using a single preferences file with a default name.
These files are stored per-app, and are private to that app by default, but may be shared
with other apps, either read-only or read–write.

6 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
7 http://standards.freedesktop.org/secret-service/
8 http://standards.freedesktop.org/secret-service/pt02.html
9 http://developer.android.com/guide/topics/data/data-storage.html#pref

http://developer.android.com/guide/topics/data/data-storage.html#pref
http://standards.freedesktop.org/secret-service/pt02.html
http://standards.freedesktop.org/secret-service/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Preferences are strongly typed, and default values are provided by the app at runtime.
There is no concept of layering or of schemas — all definition of the preferences files is
handled at runtime.

Preferences are saved to disk immediately.

Android uses a custom XML format10 to allow apps to define preference UIs (known as
‘activities’ in Android terminology). This format can define simple lists of preferences,
through to complex UIs with grouped preferences, subscreens, lists of subscreens, and
custom preference widgets. Implementing features such as making one preference
conditional on another is possible, but requires complex XML.

4.2.2 PERSISTENT DATA

Android offers several options for persistent data11:

• Internal storage: Files in a per-(user, app) directory, which may optionally be made
world-readable or writable to allow access to other apps or users (though this is
strongly discouraged).

• External storage: Files in a world-readable storage area which is accessible to the
user, such as an SD card. Accessible to all other apps and users which hold the
READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE permissions.

• SQLite database: Arbitrary app-defined tables in a per-(user, app) SQLite database.
This may not be shared with other apps or users.

• Network connection: Using the normal networking APIs, Android suggests that data
can be stored on servers controlled by the app developers. It provides no special API
for this.

For saving an application’s state, Android offers a persistence API on the Activity class12.
This automatically saves the state of all UI elements (such as the text in an entry widget,
and the position of a list), but cannot automatically save application-specific internal
state (member variables). For this, the application must override two toolkit methods
(onSaveInstanceState() and onRestoreInstanceState()) and implement its own
serialisation and deserialisation of state to a set of key–value pairs which are then stored
by Android.

4.2.3 SECRETS AND PASSWORDS

Android recommends storing secrets and passwords in two ways. For authentication
credentials for online services, it provides an AccountManager API13 which abstracts
authentication for known online services (which are supported by pluggable backends,
potentially provided by application bundles) and stores the credentials in an OS-wide
store. The service handles authenticating and re-authenticating when the login session
ends.

For secrets which are not for online accounts, or otherwise do not fit the AccountManager

10 http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
11 http://developer.android.com/guide/topics/data/data-storage.html
12 http://developer.android.com/training/basics/activity-lifecycle/recreating.html
13 http://developer.android.com/reference/android/accounts/AccountManager.html

http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs

pattern, Android recommends14 using the normal preferences API (section 4.2.1), as while
preferences are not encrypted in storage, they are only accessible to the application which
owns them, so cannot be stolen by other applications. However, if the sandboxing system
is compromised (potentially by an attacker with physical access to the device), the stored
secrets will be accessible in plaintext.

4.3 IOS

4.3.1 PREFERENCES

iOS stores preferences as key–value pairs15, which are separated into domains by user,
application and machine. The same preference may be set in multiple domains, and they
are searched in a defined priority order to determine which value to use16. This means that
an application may, for example, choose to share a given preference between all users of
that application on a given machine.

Application IDs use the standard reverse domain name syntax to ensure uniqueness.

Preference values may be any type supported by Core Foundation property lists17, including
strings, integers and arrays. Default values must be coded into the application.

Preference keys may be generated at runtime by the application, and do not have to be
defined in a schema in advance.

Preferences are synchronised with the on-disk store manually, so the application chooses
when they are written to disk.

On certain Apple operating systems, preferences may be ‘managed’ by the administrator18,
setting an override value which overrides any value set by the user for a given preference
key.

4.3.2 PERSISTENT DATA

iOS offers several options for persistent data:

• Filesystem: Arbitrary files may be written to the filesystem in various app-specific
locations19.

• Core Data API: This is an object-graph management API20, which allows versioned

14 http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-
in-android-application/786588#786588

15 https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPr
eferences.html#//apple_ref/doc/uid/10000129-SW1

16 https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Con
cepts/PreferenceDomains.html

17 https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CF
PropertyLists.html#//apple_ref/doc/uid/10000130i

18 https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Con
cepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191

19 https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgra
mmingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP4
0010672-CH3-SW11

20 https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-
CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28

https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588

control of instances of objects created from a schema. Instead of being used by an
application to persist data, this API is designed to form the core of the application’s
data model. It supports editing and discarding edits, undo, redo, versioning of the
object schema, and large data sets.

• Property List API: A property list is a hierarchical, structured piece of data,
consisting of primitive data types, arrays and dictionaries which may be nested
arbitrarily21. Property lists can therefore be used to store arbitrary application data.
There is an API to serialise them to the file system.

• SQLite: The standard SQLite API may be used, backed by a file, to store relational
data in a database.

For persisting an entire application’s state, iOS provides a solution similar to Android
(section 4.2.2)22. The developer must annotate each UI view class which needs to be saved
and restored, and the UI toolkit will automatically persist the state of the widgets in that
view when the application is suspended. As with Android, the developer must implement
two methods for serialising and deserialising application-specific state from member
variables: encodeRestorableStateWithCoder and
decodeRestorableStateWithCoder.

4.3.3 SECRETS AND PASSWORDS

iOS uses the same keychain API23 as OS X. This provides a system service for storing
secrets, passwords and certificates. They are encrypted in storage, using an encryption key
which is derived from the iOS application’s ID and the user’s password.

The keychain is encrypted in backups, and stored without its encryption key, so an
attacker cannot extract secrets from backups.

An iOS application can access the secrets it has stored in the keychain, but cannot access
secrets from other applications. There is no way to (for example) share login details for a
given website between all applications which access that website — they must all query
the user for the details and store them separately. This differs from OS X, where all
applications can access any stored secrets, subject to the user approving the access
(trusting the application).

4.4 GENIVI

4.4.1 PREFERENCES AND PERSISTENT DATA

GENIVI does not differentiate between preferences and persistent data, and provides one
low-level API for saving and loading persistent data. It does not support automatically
persisting an entire application’s state.

21 https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropert
yLists/AboutPropertyLists.html

22 https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRe
storingState.html

23 https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01i
ntroduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1

https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html

The GENIVI Persistence Management system24 handles all data read and written during the
lifetime of an IVI system. It aims to provide a standard API for all GENIVI platforms to use,
which reliably stores data in the face of power disturbances, and the limited write-cycle
lifetime of some non-volatile storage devices (flash memory).

It is split into four components:

• Client library: API for writing key–value or arbitrary data to a file, which may be used
by only the current application, or shared between all applications.

• Administration service: system for installing default values and configuration for
the data storage for each application; backing up and restoring stored data; and
implementing factory reset of data.

• Common object: used by the other components to access key–value databases
through a caching layer.

• Health monitor: system under development to implement data recovery in the case
of corruption or loss, using existing backups.

The GENIVI Persistence Management system only supports storage of data as byte arrays
— applications must serialise and deserialise their data formats themselves. Similarly, it
does not implement versioning of stored data.

The data storage code is implemented as a set of plugins for the client library,
implementing different methods for storing data. There are various types of plugins
implementing layers of functionality such as hardware information querying, encryption,
early loading of data, and the default storage backend.

Key–value data is limited to 16KB per key. Keys are stored per-application, namespaced by
an application-chosen arbitrary identifier. As persistent data is stored in a separate file
per application, Unix users and groups may be used to enforce access control on the
persisted data.

GENIVI has investigated providing an SQLite API for relational data storage, and has
provided recommendations for it25, but has not shipped a version with SQLite support (as
of version 0.3.0 of this document).

To persist an application’s state, the developer must manually implement serialisation
and deserialisation of all UI and internal state of the application using the Persistence
client library.

4.4.2 SECRETS AND PASSWORDS

Similarly, GENIVI has no specialised API for storing secrets and passwords — applications
must use the persistence management system. The system does allow for encrypted
storage of persistent data using a plugin — but that encrypts all stored data, including
preferences and application state.

24 http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ArchitectureManual.pdf
25 http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf,

11.7§

http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ArchitectureManual.pdf

5 APPROACH
Preferences and persistent data have largely separate requirements: preferences are small
amounts of data; need to be accessed by multiple components; will typically be read much
more frequently than they are written; and need to support features like vendor overrides
(section 3.13) and vendor lockdown (section 3.14). Persistent data may vary from small to
large amounts of data; will be read and written frequently; in app-specific formats; and do
not need to be accessed by other components.

The expected amount of data to be stored, and the relative frequency of reads and writes of
that data, is an important factor in the choice of storage format to use. Preferences should
be stored in a format which is optimised for reads; persistent data should be stored in a
format which is optimised for frequent reads and writes, since apps should update it
frequently as they may be killed at any time.

For these reasons, we suggest preferences and persistent data are handled entirely
separately. The following sections will cover them separately, giving our recommended
approach and justifications which refer back to the requirements (section 3).

User secrets and passwords (section 3.16) have different requirements again:

• Confidentiality in storage (encryption).

• Sharing secrets and passwords for a given resource (such as website) between all
applications using that website (i.e. secrets and passwords are not necessarily
specific to an application, while preferences typically are).

• No fixed schema: the credentials required to access a given service (such as
website) may change over time as that service changes.

As the system explicitly does not support full-disk encryption (for performance reasons),
user secrets and passwords should be stored via the freedesktop.org Secrets D-Bus API26,
rather than the preferences or persistence APIs. The Secrets D-Bus API explicitly handles
encryption of the secret store, whereas a general design for a preferences system should
have no need for encryption, and hence adding it to the API would be an unnecessary
complication for 90% of the use cases. Accordingly, confidential data will not be
considered in the approach below.

For further discussion and designs on the topic of secrets and passwords, see 13.1 of the §
Security design document27.

User secrets and passwords (section 3.16) have different requirements again — the
requirement of confidentiality in storage. As the system explicitly does not support full-
disk encryption (for performance reasons), user secrets and passwords should be stored
via the freedesktop.org Secrets D-Bus API28, rather than the preferences or persistence
APIs. Accordingly, confidential data will not be considered in the approach below.

5.1 PREFERENCES ARCHITECTURE

Access to app, user and system settings should be through the GSettings API, most likely

26 http://standards.freedesktop.org/secret-service/
27 This document refers to version 1.1.4 of the Security design.
28 http://standards.freedesktop.org/secret-service/

http://standards.freedesktop.org/secret-service/
http://standards.freedesktop.org/secret-service/

backed by dconf. (Refer to section 4.1 for an overview of the way GSettings and dconf fit
together.) As system settings are defined as those settings which are accessed by multiple
components, settings which are solely for the use of a single system service may be stored
in other ways, and are beyond the scope of this document.

Each component should have its own GSettings schema:

• App schemas: In the form net.example.MyApplication.SchemaName. Each app
may have zero or more schemas, but all must be prefixed by the app ID (in this case,
net.example.MyApplication; see the Applications Design document for details
on the application ID scheme) to provide a level of namespacing.

• User schemas: These may have any form, and will typically re-use existing cross-
desktop schemas, such as org.gnome.system.locale, as these are supported by
many existing software components used by Apertis.

• System schemas: These may have any form, similarly.

Schema files for apps should be packaged with their app. For user services, they could be
packaged with the most relevant service, or in a general purpose gsettings-desktop-
schemas package (adapted from Debian) and an accompanying apertis-schemas
package for Apertis-specific schemas.

All reads and writes of all settings should go through the normal GSettings interface —
leaving access controls and policy to be implemented in the backend. App code therefore
does not need to treat reads and writes differently, or treat app, user and system settings
differently.

The use of GSettings also means that a single schema may be instantiated at multiple
schema paths. Typically, a schema will only be instantiated at the path matching its ID;
but a relocatable schema may be instantiated at other paths. This can be used to store
settings for multiple accounts, for example.

It is expected that each app will handle any upgrades to its preference schemas, for
example from one major version of the app to the next (section 3.4). Apertis will not
provide any special APIs for this. As this is highly dependent on the structure of the
preference keys an app is storing, Apertis can provide no recommendations here. Note,
however, that GSettings is designed with upgradability in mind: new preference keys take
their value from the schema-provided defaults until the user sets them; the values for old
preferences which are no longer in the schema are ignored. It is recommended that the
type or semantics of a given GSettings key is not changed between versions of an app
bundle — if it needs to be changed, stop using the old key, migrate its stored value to a
new key, and use the new key in newer versions of the app bundle.

Requirements

Through the use of the GSettings API, the following requirements are automatically
fulfilled:

• 3.2: Writability — using g_settings_is_writable()

• 3.4: System updates — Old keys are either kept, or superseded by new keys with
migrated values if their type or semantics change

• 3.5: Factory reset — for individual keys, using g_settings_reset(); support for
resetting entire schemas needs to be supported by the designs below

• 3.6: Abstraction level — GSettings serves as the abstraction layer, with the individual
backends below adding no further abstractions

• 3.9: Transactional updates — GSettings provides g_settings_delay(),
g_settings_apply() and g_settings_revert() to implement in-memory
transactions which are serialised in the backend on calling apply

• 3.12: Race conditions — g_settings_get() automatically returns the default value
if no user-set value exists; there is no atomic API for setting settings

• 3.15: User interface — g_settings_bind() can be used to bind a GSettings key to a
particular UI widget, allowing interface UIs to be built easily (noting the argument in
section 5.1.5 that preferences UIs should not be automatically generated)

5.1.1 PROXIED DCONF BACKEND

In its current state (May 2015, detailed in section 4.1), dconf does not support the
necessary fine-grained access controls for multiple components accessing the
preferences. However, a design is being implemented upstream to proxy access to dconf
through a separate service which imposes access controls based on AppArmor (intended
to be ready by the end of May 2015).

On the assumption that this work can be completed and integrated into Apertis on an
appropriate timescale, this leads to a design where the dconf daemon runs as a system
service, storing all settings in one database file per default layer:

• App database:
/Applications/net.example.MyApplication/username/config/dconf/ap
p

• User database: ~/.config/dconf/user

• System database: /etc/dconf/db/local

This would be implemented as the dconf profile:

user-db:user
file-db:/Applications/net.example.MyApplication/username/config/dconf/app
system-db:local

All accesses to dconf would go through GSettings, and then through the proxy service
which applies AppArmor rules to restrict access to specific settings, implementing the
chosen security policy (section 3.1). The rules may, for example, match against settings
path and the AppArmor label of the calling process.

The proxy service would therefore implement a system preferences service.

Vendor lockdown (section 3.14) is supported already by dconf29 through the use of
lockdown files, which specify particular keys or settings sub-trees which may not be
modified.

29 https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

Rollback (section 3.3) is supported by having one database file per (user, app) pair, which
can be snapshotted and rolled back using the normal app snapshot mechanism described
in the Applications Design. dconf will detect the rollback of the database and reload it.

Resetting all system settings would be a matter of deleting the appropriate databases —
the keys in that database will revert to the default values provided by the schema files. As
this is a simple operation, it does not have to be implemented centrally by a preferences
service. Resetting the value of an individual key is supported by the
g_settings_reset() API, which is already implemented as part of GSettings.

The existing Apertis system puts

#include <abstractions/gsettings>

in several of the AppArmor profiles, which gives unrestricted access to the user dconf
database. This must change with the new system, only allowing the dconf daemon access
to the database.

Requirements

This design fulfills the following requirements:

• 3.1: Access permissions — through use of the proxy service and AppArmor rules

• 3.3: Rollback — by rolling back the user’s per-app database

• 3.5: Factory reset — by deleting the user’s database or the user’s per-app database

• 3.7: Minimising I/O bandwidth — dconf’s database design is optimised for this

• 3.8: Atomic updates — dconf performs atomic overwrites of the database

• 3.10: Performance tradeoffs — dconf is heavily optimised for reads rather than writes

• 3.11: Data size tradeoffs — dconf uses GVDB for storage, so can handle small to large
amounts of data

• 3.13: Vendor overrides — dconf supports vendor overrides inherently

• 3.14: Vendor lockdown — dconf supports vendor lockdown inherently

5.1.2 DEVELOPMENT BACKEND

In the interim, we recommend that the standard dconf backend be used to store all
system, user and app settings. This will not allow for access controls to be applied to the
settings (requirement 3.1), but will allow for app development against the final GSettings
interface.

Once the proxied dconf backend is ready, it can be packaged and the system configuration
changed — no changes should be necessary in user services or apps to make use of the
changed backend.

This development backend would support vendor lockdown as normal. It would support
resetting all settings at once, but would not support resetting an individual app’s settings
(or rolling them back) independently of other apps, as all settings are stored in the same

dconf database file.

Requirements

This design fails the following requirements:

• 3.1: Access permissions — unsupported by the current version of dconf

• 3.3: Rollback — unsupported by the current version of dconf

It supports the following requirements:

• 3.5: Factory reset — partially supported by deleting the user’s database; resetting a
(user, app) pair is not supported as all settings are stored in the same dconf
database file

• 3.7: Minimising I/O bandwidth — dconf’s database design is optimised for this

• 3.8: Atomic updates — dconf performs atomic overwrites of the database

• 3.10: Performance tradeoffs — dconf is heavily optimised for reads rather than writes

• 3.11: Data size tradeoffs — dconf uses GVDB for storage, so can handle small to large
amounts of data

• 3.13: Vendor overrides — dconf supports vendor overrides inherently

• 3.14: Vendor lockdown — dconf supports vendor lockdown inherently

5.1.3 KEY-FILE BACKEND

As an alternative, if it is felt that the development backend is too simplistic to use in the
interim before the proxied dconf backend is ready, the GSettings key-file backend could be
used. This would allow enforcement of access controls via AppArmor, at the cost of:

• lower read performance due to not being optimised for reads (or in general);

• requiring code changes in user services and apps to switch from the key-file
backend to the proxied dconf backend once it's ready;

• requiring settings values to be migrated from the key-file store to dconf at the time
of switch over;

• not supporting vendor lockdown or vendor overrides.

Due to the need for code changes to switch away from this backend to a more suitable
long-term solution such as the proxied dconf backend, we do not recommend this
approach.

In detail, the approach would be to use a separate key file for each schema instance,
across all system services, user services and apps. This would require using
g_settings_key_file_backend_new() and
g_settings_new_with_backend_and_path() to manually construct the GSettings
instance for each schema, using a key file path which corresponds to the schema path.

Access control for each schema instance would be enforced using AppArmor rules which
restrict access to each key file as appropriate. For example, apps would be given read-only

access to the key files for system and user settings, and read–write access to the key file
for their own app settings.

Vendor lockdown would be supported by vendors patching the AppArmor files to limit write
access to specific schema instances. It would not support per-key lockdown at the
granularity supported by dconf.

This code for creating the GSettings object could be abstracted away by a helper library,
but the API for that library would have to be stable and supported indefinitely, even after
changing the backend.

Requirements

This design fails the following requirements:

• 3.10: Performance tradeoffs — GKeyFile is equally non-optimised for reads and
writes

• 3.13: Vendor overrides — unsupported by GKeyFile

• 3.14: Vendor lockdown — unsupported by GKeyFile

It supports the following requirements:

• 3.1: Access permissions — supported by AppArmor rules on the per-schema key files

• 3.3: Rollback — by snapshotting and rolling back the appropriate key files

• 3.5: Factory reset — by deleting the appropriate key files

• 3.7: Minimising I/O bandwidth — GKeyFile’s I/O bandwidth is proportional to the
number of times each key file is loaded and saved

• 3.8: Atomic updates — GKeyFile performs atomic overwrites of the database

• 3.11: Data size tradeoffs — GKeyFile’s load and save performance is proportional to
the amount of data stored in the file, so it is suitable for small amounts of data

5.1.4 SECURITY POLICY

All three potential backends enforce security policy through per-app AppArmor rules (if
they support implementing security policy at all — the development backend, section 5.1.2,
does not).

It is beyond the scope of this document to define how each app ships its AppArmor rules,
and how Apertis can guarantee that third-party apps cannot grant themselves higher
privileges using additional rules. The suggestion in section 8.3 of the Applications Design
document is for the AppArmor rule set for an app to be automatically generated from the
app’s manifest file by the app store (which is trusted). The manifest file could contain
permissions such as ‘can-change-locale’ or ‘can-add-network’ which would translate to
AppArmor rules allowing an app write access to the relevant user and system settings.

Additionally, by generating AppArmor rules from an app’s manifest, the precise format of
the AppArmor rules is abstracted, allowing the preferences backend to be switched in
future (just as app access to preferences is abstracted through GSettings).

5.1.5 USER INTERFACE

We recommend that each app implement its own preferences interface, as a separate
window in the app, or in some other manner in the app its UI designers feel is appropriate.

This preferences UI should be launchable via an action which is triggered by the
ActivateAction method of the org.freedesktop.Application D-Bus interface30
When triggered, this action launches the app with the preferences UI shown, or brings the
preferences UI to the foreground if the app is already running. This gives a method for a
system preferences app to list installed apps and launch their preferences centrally, if
desired. If an app supports this action, it must set a supports-show-preferences flag
in its manifest, so that the system preferences app knows which apps to list.

The system preferences app should present system and user preferences which are not
specific to any app — for example, language or background settings. It would be a separate
app binary, pre-installed, and with security policy allowing it to set user and system
settings. Use of the system preferences app may be restricted to administrative users (for
example, the car's owner) — the policy about which users may run the system preferences
app is beyond the scope of this document, which assumes that if the system preferences
app is running, it may modify system and user settings.

All preferences UIs should be designed manually, and must not be automatically generated
from the GSettings schema files. To do so is tempting, and can rapidly produce rough
drafts of preferences UIs, but in our experience can never result in a high-quality finished
UI with:

• logically grouped options;

• correctly aligned controls;

• a concept of which preferences are most important, which ones are ‘advanced’, and
which ones should be hidden;

• conditional defaults (for example, when you set up IMAP e-mail, the default port
should be 143, except if you have selected old-style SSL in which case it should be
993); and

• the ability to hide or disable preferences that do not apply because of the value of
another preference (for example, if you switch off Bluetooth completely, then the
widget to change the name that is broadcast over Bluetooth should be hidden or
disabled).

If the uniform appearance of preferences UIs is a concern, this should be addressed
through convention, the default appearance of widgets in the UI toolkit, and the use of a
set of human interface guidelines such as the GNOME HIG31. Specifically, we recommend
that preferences are:

• integrated into the main application UI if there are only a small number of them;

• instant-apply unless doing so would be dangerous32, in which case they should be
explicit-apply for all preferences in the dialogue (for example, changing monitor

30 http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
31 https://developer.gnome.org/hig/stable/dialogs.html.en
32 https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply

https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply
https://developer.gnome.org/hig/stable/dialogs.html.en
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

resolutions is dangerous, and hence is explicit-apply); and

• grouped logically in the UI.

If, after the preferences UIs of several applications have been implemented, some common
widget patterns have been identified, we suggest that they could be abstracted out into
new widgets in the UI toolkit. The goal of this would be to increase consistency between
preferences UIs, without implementing essentially a separate UI toolkit for them, which
would be the result of any template- or auto-generation-based approach.

Alternative model 1: embedding preferences for individual applications in the system
preferences application

Preferences for individual apps could instead be presented together in the system
preferences app. This is not recommended, as it has various disadvantages:

• Increased complexity: there would need to be some way of embedding the UI from
the app into the system preferences app, similar to Android Preference Fragments33
(see below).

• Decreased flexibility for app authors to present preferences as best suits the app’s
UI design.

• Moves the preferences away from the app to somewhere the user may not
immediately look for them.

The advantage it provides is extremely tight integration of application preferences into the
system preferences application.

There are three ways to embed a preferences UI from an application (A) into the system
preferences app (B):

1. Run code from A in B in order to build and run the preferences UI. As A is untrusted,
this allows potentially malicious code to be run with the (presumably raised)
privileges of the system preferences application, and with no effective way of
keeping the security domains separate, as that’s only possible using a process
boundary.

2. Define the preferences UI for A statically, for example by generating it from the
GSettings schema for A. Implement code in B to generate a UI from this definition.
This has the problems of generated preference UIs described above.

3. Use a nested Wayland compositor to embed the UI from A in B while keeping A as a
separate process. If B implements a nested Wayland compositor, and all
applications which need to display preferences there connect to it using the
Wayland protocol, they can send their rendered UI to B, and it can return input
events to them to be handled.

The third approach is the best balance of security and feasibility, but would be complex to
implement — it requires designing and implementing an extension to the Wayland
protocol for handling the sub-compositing. It is for this reason that we do not recommend
the overall approach of embedding preferences for individual apps in the system
preferences app.

33 http://developer.android.com/guide/topics/ui/settings.html#Fragment

http://developer.android.com/guide/topics/ui/settings.html#Fragment

If this model were to be implemented, it would require a more thorough security
evaluation first.

Alternative model 2: linking to individual applications from the system preferences application

As the first alternative model is complex to implement, a simpler alternative which
presents much the same user experience may be for the system preferences application
to list applications which have preferences UIs (as determined using their manifests, as
described in section 5.1.5). When the user clicks on a listed application, the system
preferences application would launch that application’s preferences UI, which would run
as described in section 5.1.5. When the user is finished editing the preferences for that
application, the back button should exit the application and hence return focus to the
system preferences application — implementing this could not be enforced by the system
preferences application, and would have to be a matter of convention (perhaps checked
when an application is submitted to the Apertis store).

This design has the advantage of giving reasonably tight integration of application
preferences into the system preferences application, while maintaining separated security
domains, and not requiring a complex implementation. It has the disadvantage that it
relies on applications to correctly implement the ‘back’ behaviour once a user has finished
editing preferences.

Alternative model, not recommended: Preferences for individual apps could instead be
presented together in the system preferences app. This is not recommended, as it
increases complexity (there would need to be some way of embedding the UI from the app
in the system preferences app, similar to Android Preference Fragments34), decreases
flexibility for app authors to present preferences as best suits the app, and moves the
preferences away from the app to somewhere the user may not immediately look for them.

5.1.6 EXISTING PREFERENCES SCHEMAS

As GSettings is used widely within the open source software components used by Apertis,
particularly GNOME, there are many standard GSettings schemas for common user
settings. We recommend that Apertis re-use these schemas as much as possible, as
support for them has already been implemented in various components. If that is not
possible, they could be studied to ensure we learn from their design successes or failures.

• org.gnome.system.locale

• org.gnome.system.proxy

• org.gnome.desktop.default-applications

• org.gnome.desktop.media-handling

• org.gnome.desktop.interface

• org.gnome.desktop.lockdown

• org.gnome.desktop.background

• org.gnome.desktop.notifications

34 http://developer.android.com/guide/topics/ui/settings.html#Fragment

http://developer.android.com/guide/topics/ui/settings.html#Fragment

• org.gnome.crypto

• org.gnome.desktop.privacy

• org.gnome.system.dns_sd

• org.gnome.desktop.sound

• org.gnome.desktop.datetime

• org.gnome.system.location

• org.gnome.desktop.thumbnailers

• org.gnome.desktop.thumbnail-cache

• org.gnome.desktop.file-sharing

Various Apertis dependencies (for example, Mutter, Tracker, libfolks, IBus, Geoclue,
Telepathy) use their own GSettings schemas already — as these are not shared, they are
not listed.

Alternative model: If the locale is a system setting, rather than a user setting, systemd's
localed35 should be used. This would require the locale to be changed via the localed D-Bus
API, rather than GSettings, which would affect the implementation of the system
preferences app.

5.2 PERSISTENT DATA ARCHITECTURE

As discussed in sections 5.3.1 and 7 of the Applications Design, and the Multiuser Design,
there is a difference between state which an app needs to persist (for example, if it is
being terminated to switch users), and state which an app explicitly needs to share (for
example, if a transactional user switch is taking place to execute an action as a different
user). The Multiuser Design encourages app authors to think explicitly about these two
sets of state, and the differences between them. It is the app which chooses the state to
persist, rather than the operating system — storage space is too limited to persist the
entire address space of an app, effectively suspending it.

The state each app chooses to persist will differ, and cannot be predicted by Apertis. There
could be a lot of state, or very little. It could be representable as a simple key–value
dictionary, or might have a complex hierarchical structure.

5.2.1 WELL-KNOWN STATE DIRECTORIES

As mentioned in the Applications Design document (sections 5.3.1 and 7), we recommend
that Apertis provide a per-(user, app) directory for storage of persisted data, and a public
API the app can call to find out that directory. The API should differentiate between cache
and non-cache state, with cache state going in
$XDG_CACHE_HOME/net.example.MyApp/ and non-cache state going in
$XDG_DATA_HOME/net.example.MyApp/. Alternatively, as suggested in the Applications
Design, the latter could be
/Applications/net.example.MyApp/Storage/username/state/. This has the

35 http://www.freedesktop.org/wiki/Software/systemd/localed/

http://www.freedesktop.org/wiki/Software/systemd/localed/

advantage of allowing all data for a particular app to be removed by deleting
/Applications/net.example.MyApp, at the cost of not following the XDG standard
used by most existing software. This fulfils the factory reset requirement (3.5).

The former is effectively equivalent to a per-(user, app) XDG_CACHE_HOME directory, and
the latter to a XDG_DATA_HOME, as defined by the XDG Base Directory Specification36.

AppArmor rules should exist to allow apps to write to these directories (and not to other
apps’ state directories). This is the extent of the security needed, as state storage is simply
an interaction between an app and the filesystem.

This approach automatically allows for rollback of persistent data (requirement 3.3) using
the normal snapshotting mechanism described in the Applications Design document.

As with preferences, app bundles must be in charge of upgrading their own persistent
data when the system is upgraded (or the app is upgraded) (section 3.4).
Recommendations are given in the subsections below.

5.2.2 RECOMMENDED SERIALISATION APIS

As each app’s state storage requirements are different, we suggest that Apertis provide
several recommended serialisation APIs, and allow apps to choose the most appropriate
one — or something completely different if that fulfils their requirements better.

Alongside, Apertis should provide guidelines to app developers to allow them to choose an
appropriate serialisation API, and avoid common problems in serialisation:

• minimise writes to secondary storage (requirement 3.7);

• ensure all updates to stored state are atomic37 (requirement 3.8); and

• ensure transactions are used for groups of updates where appropriate (requirement
3.9).

Depending on the requirements it is believed that apps will have, some or all of the
following APIs could be recommended for serialising state to secondary storage. For
comparison, Android only provides a generic file storage API, and an SQLite API, with no
implemented key–value store APIs38. Apps must implement those themselves.

GKeyFile

https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html

Suitable for small amounts of key–value state with simple types. Suitable for small
amounts of data.

All updates to a GKeyFile are atomic, as it uses the atomic-overwrite technique: the new
file contents are written to a temporary file, which is then atomically renamed over the top
of the old file. Transactional updates can be implemented by saving the key file to apply
the transaction, and discarding the in-memory GKeyFile object to revert it.

36 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
37 Atomic in the sense that either the old or new states are stored in entirety, rather than some intermediate

state, if power is lost part-way through an update.
38 http://developer.android.com/guide/topics/data/data-storage.html

https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

The amount of I/O with a GKeyFile is small, as the amount of data which should be stored
in a GKeyFile is small, and the file is only written out when explicitly requested by the app.

System upgrades have to be handled manually by app bundles — if the persistence data
format has to change, the app must migrate data from the old format to the new format
the first time it is run after an upgrade. In this case, it is recommended that all GKeyFiles
used for persistent data contain a ‘Version’ key specifying the data format version in use.

GVDB

https://git.gnome.org/browse/gvdb

Memory-mapped hash table with GVariant-style39 types, suitable for small to large
amounts of data which are read much more frequently than they are written. This is what
dconf uses for storage.

All updates to a GVDB file are atomic, as it uses the same atomic-overwrite technique as
GKeyFile (above). Transactions are supported similarly — by writing out the updated
database or discarding it.

The amount of I/O for reads from a GVDB file is small, as it memory-maps the database, so
only pages in the data it actually reads (plus some metadata). Writes require the entire file
to be updated, but are only done when explicitly requested by the app.

GVDB supports per-file versioning (though this is not currently exposed in the public API).
This can be used for handling system upgrades (section 3.4) — the database must be
explicitly migrated from an old version to a new version when an upgraded app is first
started.

SQLite

http://sqlite.org/

Full SQL database implementation, supporting simple SQL types and more complex
relational types if implemented manually by the app. Suitable for medium to large
amounts of data which are read and written frequently. It supports SQL transactions.

SQLite is not a panacea. It is designed for the specific use pattern of SQL databases with
indexes and relational tables, with frequent reads and writes, and infrequent deletions of
data. Apps will only get the best performance from SQLite by defining their own table
structure, indices and relations; imposing a common key–value-style API on top of SQLite
would give lower performance.

SQLite has limited support for SQL schema upgrades with its ALTER TABLE statement40,
which supports renaming tables and adding new columns to tables. Apps must
implement their own data migration from old to new versions of their database schema;
documenting this is beyond the scope of this design.

Apps should only use SQLite if they have considered issues like their vacuuming policy —
how frequently to vacuum the database after deleting data from it. See:

• https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/

39 https://developer.gnome.org/glib/stable/glib-GVariant.html
40 https://www.sqlite.org/lang_altertable.html

https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/
https://www.sqlite.org/lang_altertable.html
http://sqlite.org/
https://developer.gnome.org/glib/stable/glib-GVariant.html
https://git.gnome.org/browse/gvdb

• https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Featur
e

GNOME-DB

http://www.gnome-db.org/

This is not recommended. It is an abstraction layer over multiple SQL database
implementations, allowing apps to access remote SQL databases. In almost all cases,
directly using SQLite (above) is a more appropriate choice.

5.2.3 WHEN TO SAVE PERSISTENT DATA

As specified in the Applications Design (section 5.3.1), state is saved to secondary storage
at times chosen by both the operating system and the app. The operating system knows
when the logged in user is about to change, or when the system is about to be shut down;
the app knows when it has changed some of its persistent state in memory, and hence
needs to write it out to secondary storage.

An action could be implemented in each app which is triggered by the ActivateAction
method of the org.freedesktop.Application D-Bus interface41 if, for example, that
interface is implemented by apps. When triggered, this action would cause the app to
store its persistent state.

5.2.4 RECENTLY USED AND FAVOURITE ITEMS

Section 6.3 of the Global Search Design specifies that an API for apps to store their
favourite and recently used items in will be provided. As this is data shared from an app to
the operating system, and is typically append-only rather than strongly read–write,
Collabora recommends that it be designed separately from the persistent data API covered
in this document, following the recommendations given in the Global Search Design
document.

41 http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
http://www.gnome-db.org/
https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature
https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature

6 SUMMARY OF RECOMMENDATIONS
As discussed in the above sections, Collabora recommends:

• Splitting preferences, persistent data storage and confidential data storage
(section 5).

• Providing one API for preferences: GSettings (section 5.1).

• Apps provide a GSettings schema file for their preferences, named after the app
(section 5.1).

• Existing GSettings schemas are re-used where possible for user and system
settings (section 5.1.6).

• Using the normal GSettings approach for handling app upgrades (section 5.1).

• Developing against the normal dconf backend for GSettings (section 5.1.2).

• Switching to the proxied dconf backend once it’s ready, to support access control
(section 5.1.1).

• A key-file backend is an alternative Collabora does not recommend (section 5.1.3).

• Permissions to modify user or system settings are controlled by the app’s manifest
(section 5.1.4).

• Permissions are converted to backend-specific AppArmor rules by the app store
(section 5.1.4).

• User interfaces for preferences are designed manually (section 5.1.5).

• Each app implements its preferences UI in its main binary, and provides a
GApplication action to show it (section 5.1.5).

• Providing API to get a persistent data storage location (section 5.2.1).

• Persistent data is private to each (user, app) pair (section 5.2.1).

• Recommending various different data storage APIs to suit different apps’ use cases
(section 5.2.2).

• Apps explicitly define which data will persist, and are responsible for saving it and
migrating it from older to newer versions (section 5.2).

• Apps can be instructed to save their persistent state by the operating system via a
D-Bus interface (section 5.2.3).

• User secrets and passwords are stored using the freedesktop.org Secrets D-Bus API,
not the Apertis preferences or persistence APIs (section 5).

	Document Change Log
	1 Introduction
	2 Terminology and concepts
	2.1 System Settings
	2.2 User settings
	2.3 App settings
	2.4 Preferences
	2.5 User services
	2.6 Persistent data
	2.7 Secondary storage
	2.8 GSettings
	2.9 AppArmor

	3 Requirements
	3.1 Access permissions
	3.2 Writability
	3.3 Rollback
	3.4 System and app bundle upgrades
	3.5 Factory reset
	3.6 Abstraction level
	3.7 Minimising I/O bandwidth
	3.8 Atomic updates
	3.9 Transactional updates
	3.10 Performance tradeoffs
	3.11 Data size tradeoffs
	3.12 Race conditions
	3.13 Vendor overrides
	3.14 Vendor lockdown
	3.15 User interface
	3.16 Storage of user secrets and passwords

	4 Existing preferences systems
	4.1 GNOME Linux desktop
	4.1.1 Preferences
	4.1.2 Persistent data
	4.1.3 Secrets and passwords

	4.2 Android
	4.2.1 Preferences
	4.2.2 Persistent data
	4.2.3 Secrets and passwords

	4.3 iOS
	4.3.1 Preferences
	4.3.2 Persistent data
	4.3.3 Secrets and passwords

	4.4 GENIVI
	4.4.1 Preferences and persistent data
	4.4.2 Secrets and passwords

	5 Approach
	5.1 Preferences architecture
	Requirements
	5.1.1 Proxied dconf backend
	Requirements

	5.1.2 Development backend
	Requirements

	5.1.3 Key-file backend
	Requirements

	5.1.4 Security policy
	5.1.5 User interface
	Alternative model 1: embedding preferences for individual applications in the system preferences application
	Alternative model 2: linking to individual applications from the system preferences application

	5.1.6 Existing preferences schemas

	5.2 Persistent data architecture
	5.2.1 Well-known state directories
	5.2.2 Recommended serialisation APIs
	GKeyFile
	GVDB
	SQLite
	GNOME-DB

	5.2.3 When to save persistent data
	5.2.4 Recently used and favourite items

	6 Summary of recommendations

